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Abstract

Diffieties are analogues of algebraic varieties for partial differential equations. They are
a kind of (generally, infinite-dimensional ) manifolds supplied with an infinite-order con-
tact structure. Secondary, or more speculatively, “quantized” calculus arises as a sort of
differential calculus over filtered smooth function algebras on diffieties that respects the
contact structure. This paper, written as an informal introduction and invitation to Sec-
ondary Calculus, is an account of the author’s attempt to understand what should be the
analogue of the Schrédinger equation for quantum ficld theory. So, more attention is paid
to motivations than to exact constructions and formulas.
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0. Introduction

But science is not yet just a catalogue of
ascertained facts about the universe; it is
a mode of progress, sometimes tortuous,
sometimes uncertain. And our interest in
science is not merely a desire to hear the
latest facts added to the collection, we
like to discuss our hopes and fears, prob-
abilities and expectations.

Sir A. Eddington

The pre-history of rational mechanics was the study of the so-called simple
mechanisms. A number of attempts to explain the whole Nature as a machine
composed of these mechanisms was made in that period. The “standard schemes™
and “models” of the modern quantum field theory (QFT) look very much like
these simple mechanisms.

This analogy, maybe, makes clear the reasons of the almost common feeling
that quantum field theory in its present form is not yet a “true” well-established
theory. Below we undertake an attempt to analyse why this is so and what ingre-
dients are to be added to the solution to get the desired crystallization.

Having this in mind we start the paper with some general observations on the
genesis of long-scale theories. These introductive pages furnish our subsequent
considerations with the necessary initial impulse. Following it we eventually ar-
rive at Secondary or, more speculatively, Quantized Differential Calculus, which
seems to have some chances to provide the passage from “standard models” to
the “true” theory with the necessary mathematical background.

We would like to stress from the very beginning that Secondary Calculus is only
a language on which, we hope, QFT can be developed smoothly, i.e. without “‘re-
normalizations”, “anomalies”, etc. If it is so, the fundamental problem to trans-
late QFT systematically into Secondary Calculus remains to be carried out sepa-
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rately. Of course, results and experiences accumulated up to now in the study of
concrete models are indispensable to this purpose.

This paper is neither a review nor a research account but a long motivation for
this Secondary Calculus. We describe informally some principal ideas and results
already obtained in this field and also indicate some problems and perspectives
which seem promising at this moment.

It was not our intention to present here a systematic and rigorous exposition of
Secondary Calculus. That would be hardly possible within the limits of one, even
long, paper. So, we restrict ourselves to a general panorama which could help the
interested reader to enter the subject by consulting the attached bibliography.
Details and techniques completing this text can be found in Refs. [51,53,49],
which we suggest to read first. They should be followed by Refs. [1,17,50,
38,54,40,41,15,16,52,28].

And, finally, the first “philosophical” pages of this paper are to be read semi-
seriously keeping an eye on the uncertainty principle: a superfluous making more
precise the meaning of words used there will kill the motivating impulses the
author hopes they emit.

1. From symmetries to conceptions
It is banal to say that every theory has its origin in rather simple things. But

what are they? The word “simple” of common language incorporates many
meanings. In linear approximation they can be displayed by the following diagram:

BANAL . — . SYMMETRIC|

in which the dots indicate the “intermediate states”. In other words, we find
enough reasons to interpret “symmetric™ as “simple but not banal”. Details are
just obstructions to symmetry. So, the models manifesting only the essence of the
phenomena in question are necessarily symmetric. Recall euclidean geometry,
Copernicus’ planetary system, Newton’s laws in mechanics or special relativity
to illustrate this idea. Hence, we accept as the leading principle that the initial
stage in the genesis of theories is the study of symmetric models. (Of course, the
above remarks are applicable only to rather long-scale situations.)

Symmetry considerations replace quite well the conceptual thinking in study-
ing symmetric models. This is why they work well at first, especially for mathe-
matically based theories, owing to the fact that ““‘symmetry” implies “solvability”
and “integrability” in this case.

At this point the theory passes to the next stage in its development when the
dominating paradigm states that everything can be composed of simple (sym-
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metric) elements studied earlier and the only thing to be understood is how.
Schematically, this period can be characterized as the time when operative con-
ceptions of the future “true” theory, not yet discovered, are substituted for their
“morphemes” and when more or less mechanical mosaics of the latter replace the
calculus of these conceptions. This is the reason to call this stage “morphological”.

A serious deficiency of these morphological compositions is that many of them
are to be corrected constantly to be in agreement with new experimental data and
theoretical demands. This produces numerous perturbation-like schemes which
are very characteristic of the morphological era.

Ptolemy’s planetary system with its numerous epi- and hypo-cycles and quan-
tum electrodynamics with its renormalizations illustrate this quite well. Also, one
can learn from these examples that the incredibly exact correspondence to exper-
iments is not all that is needed to be a “true’ theory. Of course, it is nothing bad
to use a perturbation scheme for technical purposes. But it would be hardly rea-
sonable to erect a skyscraper on a perturbative foundation.

Afterwards theories enter their “troubled times”, or, which is better to say, the
stage of conceptual self-organization. Surely, this is the longest, mysterious and
even dramatic period in the birth process of a new theory. At that time some
hidden selection mechanisms acting in the relevant scientific community draw
out, step by step, the necessary new conceptions and one day it appears that they
constitute that unique language in which the laws of the scope of the phenomena
in question can be expressed quite adequately and, therefore, elegantly. This the
just the birthday of a new theory.

Darwin’s selection theory seems to be applicable to this selection of concep-
tions as well. For example, one can see many fantastic creations appearing during
troubled times (for example, look at the history of QFT 23 years back). This is
typical for situations when the expressive powers of the language do not corre-
spond to the subject to be described.

Summing up we represent our idea concerning the genesis of mathematically
based theories by the scheme

symmetric origin morphological
(“beautiful times™) era

conceptual self-organization conceptual (1)

(“troubled times™) happy end

Of course, in reality, the indicated periods get mixed and this can happen, some-
times, in a very curious way. For example, nowadays synthetic geometries, typi-
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cal creations of the morphological era, have almost left the land, being substituted
by differential geometry. On the other hand, measure theory, being a morphol-
ogical realization of the idea of integration, coexists peacefully with its future
conqueror, namely, the de Rham-like cohomologies.

The passage from attempts to model the scope of new phenomena in terms of
the “old”, already existing mathematical language to a new one of a higher level,
whose expressive potentials are just adequate to the new demands, is the essence
of scheme (1). Here we use “mathematical language” in the spirit of “program
language”. This enables us to take into account anthropomorphic elements pres-
ent implicitly in the theories due to the fact that individual brains and scientific
communities are something like computers and computer networks, respectively.
The history of metric geometry from its Hellenistic symmetric form based on
common logic up to its modern Riemannian form based on Calculus gives an
ideal illustration of the above scheme.

2. “Troubled times” of quantum field theory

Assuming scheme (1) to be true its becomes quite clear that nowadays QFT
passes through its “troubled times”. Even some key words of QFT’s current vo-
cabulary, such as ‘“renormalizations”, “broken symmetries”, ‘“anomalies”,
“ghosts” etc., indicate a deep discrepancy of its physical content and the mathe-
matical equipment used. Also, one can see too many Lie groups, algebras, etc. up
to quantum and quasi-quantum ones, and symmetry considerations based on
them, which play a fundamental role in the structure of modern QFT. This shows
that the theory is not far enough from its symmetric origin. In fact, the strongest
and most obvious argument in favor of these “troubled times” comes from the
perturbation type structure of the existing theory. However, the absence of real
alternatives and long-time habits have reduced the value of this argument almost
to zero.

The author realizes that the sceptic reader, even convinced of these “troubled
times”’, will prefer to follow the current research activity in expectation of times
when the aforementioned natural selection mechanisms will have accomplished
their work. So, this paper is mainly dedicated to those who would be interested
to seek some possible artificial selection mechanisms, which, as is well known,
work much faster.

At this point we pass to look for this “program language” for QFT, being mo-
tivated by the above “evolution theory”. Of course, the latter should be exposed
with more details to be perceived correctly. But we do not take the risk to go more
in this direction, remembering the attitude toward any philosophy at the end of
the “point theoretic” epoch we are living in. Instead we invite the reader to return
to this point once again after having read the whole paper. Also, a development
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of the above general ideas can be found in Ref. [1], ch. 1. In particular, there we
touch such topics as which anthropomorphic factor stands behind the idea to put
set theory in the foundations of the whole mathematics and why, properly, Cal-
culus is the language of classical physics.

3. “Linguization” of the Bohr correspondence principle
gu

We find the initial data in the following two general postulates, which seem to
be beyond doubt:

1. Calculus is the language of classical physics.

I1. Classical mechanics is the limit case with 2— 0 of quantum mechanics (‘“‘the
Bohr correspondence principle™).

These are our initial position and momentum, respectively.

To avoid misunderstanding we would like to stress that the word “Calculus™ is
used here, and later on, in its direct sense, i.e. as a system of conceptions (say,
vector fields, differential forms, differential operators, jets, de Rham’s, Spencer’s,

. cohomologies, etc., governed by general rules, or formulas like d?=0,
Ly=iyed+d-iy, etc.). As we have shown in Ref. [42], they all constitute a sort
of “logic algebra” due to the fact that differential calculus can be, in fact, devel-
oped in a purely algebraic way over an arbitrary (super-) commutative algebra 4
(see also Ref. [17], ch. 1). This algebraically constructed Calculus coincides with
the standard one for smooth function algebras A=C>(M). Also, one can learn
from this algebraic approach, and this is very important to emphasize, that there
are many things to discover and to perceive in order to close this logic algebra,
i.e. to get the whole Calculus. Higher-order analogs of the de Rham complexes
[48] give such a kind of example.

Thus, the first postulate suggests to look for an extension of Calculus while the
second one defines more precisely the direction to aim at. Having this in mind
we need to extract the mathematical essence of Bohr’s correspondence principle
and the following diagram illustrates how it can be done:

equations of quantum equations of classical

. 75 - U .
mechanics = mechanics
g N . quantization . , .
(Schrodinger’s equations) (Hamilton’s equations)

| “mathematization”

partial differential char ordinary differential
equations equations
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Here CHAR s denotes the map which assigns to a given system of partial differ-
ential equations (p.d.e.) # asystem %% or ordinary equations describing how 2-
type singularities of solutions of % propagate. What is meant by solution singu-
larity types £ and what is, in particular, the above singularity type Q will be dis-
cussed later on, see also Refs. [43,52,26,28]. But now we will explain what are
the reasons for suspecting CHAR, to be behind the Bohr correspondence
principle.

First, note that the mathematical background of the passage from wave to geo-
metrical optics can be naturally presented in the form % - #2,, ,, where FOLD
stands for the folding type singularity of multivalued solutions of % (see section
16). On the other hand, multivaluedness of solutions is related to non-unique-
ness of the Cauchy problem and, therefore, to the theory of (bi-)characteristics.

Remark. There exists a dual way to pass to geometrical optics proposed by Lune-
burg [25] and based on the study of discontinuous solutions. However, the choice
of Luneburg’s approach instead of that we have adopted does not lead us to es-
sential changes in our subsequent arguments.

Second, remembering that Schriodinger discovered his famous equations pro-
ceeding from the analogy with wave-geometric optics, one can expect a similar
mechanism in the passage from quantum to classical mechanics [36]. More pre-
cisely, it seems natural to hypothesize the equations of classical mechanics to be
the Q-characteristic equations of the corresponding equations of quantum me-
chanics. These hypothetical Q-characteristic equations should play a similar role
with respect to an appropriate “quantum’ solution singularity type as the stan-
dard characteristic equations do with respect to the singular Cauchy problem.
This hypothesis becomes almost evident in the framework of Maslov’s approach
to quasi-classical asymptotics [30]. We refer also to the lectures by Levi-Civita
[20] and the work by Racah [35], one of the first attempts to go this way.

This all motivates us to take the formula

QUANTIZATION=CHAR;' (2)

as the leading principle and we go to seek its consequences.
First of all, the direct attempt to extend (2) to QFT leads immediately to the
problem illustrated by the following diagram:

h—0 .
quantum fields _ classical fields
J “mathematization” | (3)
o CHARg partial differential

equation
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In other words, we have to answer the question: what kind of mathematical ob-
jects are to be placed into the left lower rectangle of (3) or, more precisely, what
is the mathematical nature of the equations whose solution singularity propaga-
tion is described by means of partial differential equations? The scheme

ordinary differential | cuar | partial differential | cuar
equations equations

motivates us to call these, yet unknown, mathematical objects secondary quan-
tized differential equations.
Thus, the problem to consider next is

What are secondary quantized differential equations? (4)

All the preceding discourses do not furnish us with the necessary impulse to at-
tack it. In searching such an impulse we consider the simplest situation when a
CHAR-type mapping appears:

Y ai(x) :7“ =b;(x) 5, {x;=a;(x)}.

i i

In other words, we will examine the passage from vector fields to ordinary differ-
ential equations making an attempt at understanding what secondary (‘“‘quan-
tized”) vector fields should be.

We can profit from the simplicity of this situation that comes from the sym-
metry of the context in full accordance with section 1. More exactly, infinitesimal
symmetries of the system x;=a,(x) are vector fields Y=>¢;(x) 9/0x, commuting
with the field X=2a,(x) 9/0x; and, as is well known, any vector field admits
locally a plot of fields commuting with it. For our purposes it is important to
observe that symmetries of the system x;=a;(x) are objects of the same nature as
the differential operator (namely, X=>a,(x) 9/0x;) defining the first-order part
of the initial equation X(u) =b. For this reason it seems very likely that second-
ary quantized vector fields are identical to symmetries of partial differential
equations. So, proceeding to check this hypothesis we have to answer the ques-
tion in the following title.

4. What are symmetries of partial differential equations and what are partial
differential equations themselves?

It is not to so easy to answer conceptually both these questions. To see why this
is so let us consider a partial differential equation, say,

F(x, U, Ui, ..., u(k))=0, (5)
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where x=(x, ..., x,,), u=(u', ..., u™) and u,,, stands for the totality of all /th
order derivatives of the dependent variables u with respect to the independent
ones x, and ask what the symmetries of (5) are. If one treats (5) to be a relation
between two different groups of variables, dependent and independent ones, then
it comes naturally to define a symmetry of (5) to be a transformation of the
dependent variables and, separately, of the independent ones which preserves
this relation. More exactly, it is proposed to call symmetries of (5) transforma-
tions of the form

(x, u) » (X(x), u(u)) (6)

which, being extended canonically to derivatives, preserve (5).
This historically first approach was followed by the following two ones enlarg-
ing the group of transformations (6), first, to

(x, u) = (x(x), 7(x, u))
and then to
(x,u) » (X(x,u),d(x,u)) .

Unfortunately, all these definitions are based on an “ad hoc” choice of trans-
formations to be taken as symmetries. So, going this way one can never be sure
that a new “Ansatz”, like (6) or (7), is the “true” final definition. For example,
the transformations (7) were, historically, followed by the famous contact trans-
formations of Lie. Namely, he proposed to consider as symmetries of (5) trans-
formations of the form

(X, ua ux) L (x5 12, lz)?) ’

where X=x(x, u, u,), u=u(x, u, u,), u,=u.(x, u, u,), which preserve (5) to-
gether with the equation du— Ju,, dx;=0.

But why cannot somebody find something else? Lie himself had not answered
this question. But he understood deeply that an expression of the form (5) is not
a sovereign object to be transformed directly but only a label of it. In particular,
his discovery of contact transformations was based on a geometric interpretation
of what stands behind labels of the form f(x, u, u,) =0 (for a discussion see Ref.
(51D).

In general, it is clear that symmetries of a mathematical object are to be its
invertible morphisms (“‘transformations”) into itself. So, one can see from the
above discussion that the observed difficulties to define symmetries of p.d.e.’s
come from the fact that really we do not know what, properly, partial differential
equations are.

The last question is, in fact, neither to absurd nor so innocent as it may appear
at first glance. On the contrary, having answered it we will gain much more than
the true concept of symmetry for p.d.e.’s.
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In what follows we allow ourselves, sometimes, to call labels what is commonly
called partial differential equations, i.e. expressions of the form (5). This is to
underline the difference between the common and the conceptual use of these
last words.

Now we pass to the necessary preliminaries.

5. Jets

Note that labels of differential equations are “algebraic” relations between in-
dependent variables and derivatives of the latter up to a prescribed order. So,
each label defines a submanifold, one of the possible local charts of which is formed
by all these variables and derivatives. These manifolds are called jet spaces (or
manifolds) and we are interested in them to reinterpret labels in an invariant
coordinate-free form. Below the necessary definitions and elementary facts on
jets are collected.

Let us fix an (n+ m)-dimensional manifold E, m >0, and a non-negative inte-
ger n. This is to emphasize our intention to consider n-dimensional submanifolds
of E. If L, L’ are two of them and ae L~ L’ we say that they have the same kth
order jet at ac F if they are tangent to each other up to order k at a. So, k-jets are
equivalence classes of n-dimensional submanifolds of E with respect to the rela-
tion “be k-tangent”. We denote by [L]% the kth order jet of the #n-dimensional
submanifold L < F at ac L. The totality of kth order jets of all possible n-dimen-
sional submanifolds L < E at all points acE is denoted by J*(E, n). Being sup-
plied with a natural structure of smooth manifold, this is called the kth order jet
space of n-dimensional submanifolds of E.

Remark. If E has a fibred structure, say, n: F—» M, dim M =n, then one can con-
sider a special class of n-dimensional submanifolds of E that are graphs of local
sections of 7. The kth order jets of these graphs constitute an open and every-
where dense subset of JX(E, 1), called the kth order jet space of sections of 7 and
denoted by J*n = J*(E, n).

Example 1 (k=0). Evidently, every two n-dimensional submanifolds of E passing
through a point ge F are tangent to each other with order zero at a. Therefore,
there exists only one 0-jet at @ and one can identify J°(E, n) with E.

Example 2 (k=1). Two n-dimensional submanifolds of E are tangent to each other
with order one at the point «a iff they have the same tangent space at a. So, first-
order jets at ac E can be identified with n-dimensional linear subspaces of the
tangent space T,E of E at a.
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We stress here that all above definitions are also valid for k=co. In particular,
J*(E, n) is well defined as a set. However, it requires some care to impose a
smooth structure on it. This will be done below.

Natural maps

o JNE, n)-J(E,n), [L]{w [L],

with co = k>[> 0 unite together jet spaces of different order into a family. In par-
ticular, they form the sequence
@21 A f—1 Qk+ 1.k

E=J(E, n) « JY(E, n) < &L gk(E n) & (8)

the inverse limit of which coincides with J* (E, n).
Foragiven L « E, dim L=#, we have the map

J(LY:L>J*(E,n), Lsaw [L]%eJ*(E, n).

A function ¢ on JX(E, n) is said to be smooth iff p-j, (L)eC>(L) for every n-
dimensional L = E. We define in this way the smooth function algebra on J*(E, n)
and, therefore, a smooth manifold structure on it. We remark that this definition
works as well for k= cc.

It follows directly from the definitions that j (L) is a smooth map, and

L, =imj, (L) c J*(E, n)

is an n-dimensional smooth submanifold of J*(E, n). Also the identities
LY=oy oju(L), k=1,

show that ¢ ; is a smooth surjection and
at;:C*(J(E, n))»C=(JX(E, n))

is an imbedding. The direct limit of the following sequence of monomorphisms:

C=(E) —22 €= (JU(E, n)) —2is . 2H421, oo (JK(E, n))

*
At 1,k

coincides, evidently, with the smooth function algebra of J* (E, n). We adopt the
standard notation C=(J*(E, n)) for it.
It is convenient to shorten these long notations as follows:

F=F(E, n)=C>(JXE,n)), 0<k<oo,
F=F(E,n)=C=(J=(E, n)).

We get the filtration
FcFccFHecF

of the algebra # by identifying % with its image in # under the monomorphism
o} . The differential calculus over the filtered algebra & ={ %} gives the neces-
sary rigorous foundations for all our subsequent constructions (see Ref. [17]).
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In particular, it enables us to handle J*(E, n) in many aspects as a usual finite-
dimensional smooth manifold.

A local chart on E is called divided if the coordinate functions forming it are
divided into two parts consisting of n and m functions, respectively. The first of
them, say xi, ..., X, are called “independent” and the second ones, say u LLum,
“dependent” variables.

A divided chart on E generates a local chart on J*(E, n), 0 < k< oo, which con-

sists of the functions
1
Xiy ey Xy Uy ooy uma"', ui,,..., |U‘<k’

where o stands for a multi-index, say o= (i, i, ..., I,), and |g| =i, +--+i,. The
function u., is defined by the condition

- 9y .
fof P — L:
uyoji(L) axrdxn VL <« E, dim n,
where
wW=f(xy,... X,), i=1,...,m, (9)

are local equations of L. And now we see that the jet manifolds J*(E, n) (or J*x)
are exactly those ones which naturally carry coordinate systems composed of in-
dependent variables together with their derivatives.

A standard label of a system of partial differential equations looks as

F(x,u,..,u,.y=0, j=1,.,1, (10)

where x=(x,, ..., X,,), u=(u', ..., u™). It is natural to interpret (10) as local
equations of a submanifold % < J*(E, n) for a suitable E. For instance,
u,=u, +uu, defines the hypersurface

Uz,0) U0y — U1y =0

in J3(R? 2) where R®*={(x, t, u)} and x,=x, x,=t, u' =u is the divided coordi-
nate system in it.

This motivates the following coordinate-free version of the standard definition
of partial differential equations.

Definition. A submanifold % < J*(E, n) is called a label of a system of partial

differential equations imposed on n-dimensional submanifolds of the given man-
ifold E.

Let a submanifold L — E be given by (9). Then the functions f/(x), i=1, ...,
m, satisfy the system (10) iff L ,, = #. So, the manifold L ,, can be taken as the
coordinate-free version of the notion of solution.

We remark that J¥z can replace J*(E, n) in all the previous discussions.



158 A.M. Vinogradov / Journal of Geometry and Physics 14 (1994) 146-194
6. Higher-order contact structures

Jet spaces possess by birth a natural geometrical structure, namely, the so-called
kth order contact structure, or the Cartan distribution. This means that a linear
subspace, say C,, of the tangent space T,J*(E, n) is assigned to each point
0cJ*(E, n).

The subspace Cy can be defined as follows. First, introduce some special #-
dimensional subspaces of T,J*(E, n), called R-planes. By definition an R-plane
at 9e J*(E, n) is a subspace of the form T,L x) supposing that 0= [ L]%. We stress
here that not every n-dimensional subspace of T,J*(E, n) is an R-plane and more
than one R-plane pass through € if k< oo and mn> 0. Second, put

Cy={the linear envelope of all R-planes at 0} .

A simple computation shows that

dimJ"(E,n):dimTgJ"(E,n)=m(n-]tk)+n, 0<k<oo
and
dim C6=m<n+i—l)+n , 0<k<co.

In particular, dim Cy— co with k—co.

Example. (classical contact structure). Consider the manifold J'(R**', n). In
thiscase m=k=1,dim JY(R"*!, n)=2n+1,dim Cy=2n,i.e., Cyis a hyper-plane
in T,J'(R"*!, n). Dividing standard cartesian coordinates (x,, ..., X, ) in R**!
as x=(xy, ..., X, ), =X, we get the local coordinates (xy, ..., X,,, ¥, D, ..., Pn) ID
JY(R"*!, n), where p,=u,,. In these coordinates Cy is given by the equation

du_ Z Di dxl=0 s
i=1

in which one can recognize the classical ( =first-order) contact structure of Lie.
In the general case Cy is given by the system

du'— Y ub,,dx;=0, I<ism, 0<|o|<k, (11)
Jj=1
where o+ 1; stands for multi-index (i, ..., ;+1, ..., i,,) supposing that o= (i, ...,
By ey 1),

The common feature of all kth-order contact structures, 0 <k < oo, is that they
all are, in a sense, “completely non-integrable” distributions. In contrast, the in-
finite-order contact structure on J*(E, n) is completely integrable. This is easily
seen from the fact that the Pfaff system (11) satisfies the Frobenius complete
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integrability conditions if k=co. Moreover, the Cartan distribution on infinite-
order jet spaces is finite dimensional in spite of its being the inverse limit of the
Cartan distributions on finite-order jet spaces whose dimension grows infinitely
with the order of jets. In fact, the dimension of this distribution is equal to », i.e.,
dim Cy=n for e J> (E, n). This means that there exists only one R-plane for any
e J<(E, n), which coincides automatically with C,.

All these remarks are to stress that infinite-order jet spaces differ from finite-
order ones not only in that they are infinite dimensional. It looks paradoxical but
the former are simpler objects than the latter with regard to the properties of basic
structures they carry naturally.

7. Differential equations are diffieties

Now using infinite jet spaces we can answer the question: what are differential

equations?
Let
J J
Di—ax.+zud+l,a k (12)

be the so-called total derivative operator with respect to x;. Then the system
F,=0, D,F;=0, 1<jg!, 1ign, (13)

defines the first extension of (10). Evidently, the system (13) is equivalent to
(10) in the sense that both have the same set of solutions. The system (13), in
fact, is a local coordinate description of a new label %(,, < J**!(E, n), which can
be defined, purely geometrically, in terms of the contact structure on J*(E, n)
only. More generally, one can define the sth extension %, < J**S(E, n) of the
label % < J*(E, n) by means of the system

F;=0, .., D,F,=0,.., |o|<s, (14)

with D,= D' «---c D7 where 6= (iy, ..., i,,). In this definition s can be taken equal
to infinity. In this case we write %, instead of %,,,,. Clearly, %, c J*(E, n).Itis
not difficult to see that

Oprsiri(Hsy) © Yoy
for every s>t¢. In particular, we have the following sequence

X+ 1L,k Xh+2.k+1 Xpe+s5+1,k+s

@=@(0) - @(1) : P—@(S)

the inverse limit of which coincides with %,
We define the smooth function algebra #(%,.) on %, to be the restriction of
the smooth function algebra of J*(E, n) on %,.:
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F(Y) =F(E,n)|y,.

This algebra is filtered naturally by its subalgebras %( %), s=0, 1, 2, ..., where
Z(%,,) is the pull-back of the algebra C=(%,,,) via the map ot 4 s: Ho— Y5,

Fo(¥s) = F(Y) = cF(H) = = < F (W) .

This enables us to develop the necessary pithy differential calculus over %,
understood as the calculus over the filtered commutative algebra
F(¥%,.)={¥%(%,)} (see Ref. [17]).

Also, %, inherits the infinite-order contact structure from the ambient space
J*(E, n). More exactly, if % is a formally integrable system and 0e %, then
Co= To(%.,.). Thus, %, is supplied canonically with a “contact structure” which
is an n-dimensional distribution on it satisfying the Frobenius complete integra-
bility conditions. Manifolds of the form %, considered together with the contact
structure described above are local forms of the objects which we call diffieties:

Definition. A manifold ¢ supplied with an n-dimensional distribution is called a
diffiety if it is locally of the form %#,_.

The number 7 is called the diffiety dimension of ¢ and is denoted by Dim ¢.
Of course, it differs, generally, from the usual dimension of @, which is equal to
infinity as a rule.

Now we take as the leading principle that, conceptually,
systems of partial differential equations are diffieties .

In particular, %,, is the object which stands behind the label % « J*(E, n) [or
behind (10)].

It would be too naive to try to change the long-time established terminology by
using the words “differential equations™ in their new meaning, i.e. as a synonym
of “diffiety”. For this reason we retain their traditional meaning, remembering,
however, that this is simply referring to a label. So, these words are to be substi-
tuted by “diffiety” when treating a conceptual problem. For example, the ques-
tion: what are the symmetries of partial differential equations, is to be formulated
as

what are automorphisms of diffieties?

A little later we will see that there is no problem to answer it. But before that we
must add some details into our picture.

First of all, we remark that starting from (10) one can produce many new la-
bels, say, transforming dependent and independent variables or passing to the
corresponding first-order system or extending it, etc. If # < J*(E, n) and
@' < J¥(E’, n) are two labels related to one another in this way, then 2, =%"_.
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This demonstrates clearly that % and %’ are actually different “labels” of the
same thing.

Now we have to interpret in terms of diffieties what are solutions of “partial
differential equations”. The concept of integral submanifold of a diffiety gives us
the answer. More exactly, let ¢ be a diffiety and Dim ¢ =n, i.e., dim Cy=n for
every fe O where 0 Cyc T,0 is the distribution with which ¢ is supplied by
definition. A submanifold W < O is called integral if T,W=C, for every e W
(see Fig. 1). Evidently, dim W=n. It can be probed that every integral subman-
ifold of the diffiety O =%, is locally of the form L, where L c E is a solution
of % in the usual sense of this word, i.e., the local equations (9) of L satisfy (10),
by which % is given locally (see Ref. [17]). This justifies our interpretation of
solutions as integral submanifolds.

What was said before enables us to consider informally a diffiety as a shelf on
which are stored all solutions of the corresponding differential equation. Also, it
leads to an important generalization of the notion of solution for arbitrary non-
linear systems of partial differential  equations (see  Refs.
[43,17,26,27,49,52,28,55]). We will discuss it below in connection with the
quantization problem.

The following types of diffieties are of importance for us. Let NV be a foliated
manifold with n-dimensional leaves. For any < N we define C, to be the tangent
space to the leaf passing through 6. The manifold N equipped with the n-dimen-
sional distribution 6+ C,is a diffiety. In fact, N= %, where % is the system of
partial differential equations composed of the Frobenius complete integrability
conditions for the distribution {Cy}. Thus, foliated manifolds are diffieties. The
diffiety dimension of such a diffiety is equal to the dimension of its leaves.

Also, every n-dimensional manifold, say M, can be regarded a foliated mani-
fold consisting of only one leaf (in this case Cy=T,M) and, therefore, as a dif-
fiety. Evidently, in this case Dim M =dim M.

Remark. There are two different natural ways to treat finite-dimensional mani-

-

Fig. 1.
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folds as diffieties. One of them was presented just above. We get the second one
by supplying M with the zero-dimensional distribution 8+ Cy={0} = TyM. In
this case Dim M =0. These two ways are, in a sense, dual to each other, and there-
fore, lead to a kind of duality in the theory of differential equations. Also, one
can see that the traditional “differential” mathematics (Calculus, geometry,
equations, etc.) viewed as a part of diffiety theory becomes conceptually closed
only if the underlying manifolds are understood to be zero-dimensional diffieties.
In other words, the standard “differential” mathematics forms the zero-dimen-
sional part of diffiety theory. So, from this point of view it would be quite natural
to suspect that the relevant mathematics necessary to quantize smoothly classical
fields has not yet been discovered to a great extent.

8. What are symmetries of partial differential equations?

As we have already noted one can immediately answer this question by re-
placing the words “differential equations” in it with “diffieties™.

Remembering that diffieties are manifolds equipped with a geometrical struc-
ture (the Cartan distribution) we see that their symmetries are to be diffeo-
morphisms which preserve this structure. More exactly we have:

Definition. A map @: 0 O is called a symmetry of the diffiety ¢ if
(i) @ is a diffeomorphism,
(ii) d0¢(ce) = C<1>(a)~
Here C, denotes, as before, the contact “plane” at § and d,@: T30 - Ty (5 O de-
notes the differential of @ at 4.

Specializing this definition to the case ¢ =%, we get the definition of symme-
try for a concrete system of partial differential equations given by its label %, i.e.
by (10).

Of course, symmetries of diffieties should constitute a special class of their
morphisms. These morphisms are called smaps and their definition is as follows.

Definition. A map @: ¢, — @, of a diffiety ¢, into a diffiety ¢ is called a smap if
(1) @is smooth, i.e., fePcC>(,) for every feC=( (),
(1i) dg¢(Cg) < C(p(g) fOI' every 06 @1.

It can be shown that smaps can be identified locally with differential operators,
generally non-linear. Smaps are analogs of smooth maps of finite-dimensional
manifolds. Also, the latter can be viewed as smaps of zero-dimensional diffieties.

Diffieties and smaps are objects and morphisms, respectively, of a category
called the category of differential equations.
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Now we have to introduce the infinitesimal version of diffiety symmetries. Let
O be a diffiety. A vector field X on 0 is called a trivial contact field (on 0) if
Xpe Cy for every Oe 0. Here X, denotes the vector of the field X assigned to 6.

Definition. A vector field X on 0 is called a contact field or a é-field if the com-
mutator [ X, Y] is a trivial contact field for every trivial contact field Y.

It results from the complete integrability of the contact structure on ¢ that
commutators of trivial contact vector fields are also trivial contact fields. In other
words, the set ¥D(0) of all trivial contact fields on ¢ is a Lie algebra.

Now it is easily seen from the definition and the Jacobi identity that %-fields
on ¢ form a Lie algebra with respect to the standard commutator operation and
that ¥D( @) is an ideal of it. We denote this algebra by D, ( ¢). The quotient Lie
algebra

Sym O=D,(0)/¢¥D(0)

is called the symmetry algebra of (0. Specializing this definition to the case ¢ =%,
we come to the (higher-)symmetry algebra of a system of partial differential
equations given by its label % [or by (10)].
We refer the reader to Refs. [51,17] for the motivation of the above quotienting.
Elements of the algebra Sym # are called (higher) infinitesimal symmetries of
the system of partial differential equations given by the label #.

9. Infinitesimal symmetries of partial differential equations are secondary
quantized vector fields

A description of the algebra Sym ¢ in local coordinates will be needed to justify
this assertion. We can restrict ourselves to the case ¢ =%, because every diffiety
0 is locally of this form.

First of all, we will consider the simplest situation when % is the “empty” equa-
tion 0=0. In this case %, =J>(E, n) and we can use a local chart of the form
(x,u, ..., u’, ...) described above.

Coordinate expressions of trivial #-fields in these coordinates look as

Y=Y aD;, aeF(E,n),
i=1
where D; is the total derivative operator (12).

Now, let 9= (¢, ..., 9.,), p.€ ¥ (E, n), be an R™-valued function on J*(E, n).

This determines the so-called evolutionary-derivation operator
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3
€, = ZDa(co,-)W, (15)

which is a vector field on J*(E, n). In fact, €, is a %-field and ¢ is called the

generating function of it. The following result gives us the necessary local descrip-

tion of ¥-fields.

Proposition. Every é-field X on J> (E, n) can be uniquely presented in the form
X=€,+Y, (16)

where Y is a trivial 4-field.

Also, we have

[Gw (Ev/] =G{aw} ’
where
{0, ¥}=C,(v)-C,(p) . (17)

This bracket operation supplies the linear space of all smooth R”-valued func-
tions, defined on the considered local chart, with a Lie algebra structure. Then
the above proposition shows this Lie algebra to be locally isomorphic with the Lie
algebra Sym J*(E, n).

If yeSym J*(E, n) and x=C€, mod ¥D(J*(E, n)), ¢ is also called the gener-
ating function of y (with respect to the chosen coordinate system).

Remark. The bracket (17) coincides with the standard Poisson bracket for func-
tions ¢, we % (E, n) supposing that m=1 and ¢, y do not depend on u.

Now we observe that every symmetry @:% — % _ generates a map
@:Sol % —Sol ¥ of the “space” of all local solutions of #. In fact, it transforms
an integral submanifold of %, into another one as is clearly seen from the defi-
nitions. Therefore, identifying integral submanifolds of %, with local solutions
of % as was explained before we get the map .

When % is the “empty” equation 0=0, then %, =J>(E, n) and the set Sol %
is canonically identified with the set of all #-dimensional submanifolds of E.
Therefore, every symmetry @:J=(E, n) »J*(E, n) generates a transformation
@ of the “space” of all n-dimensional submanifolds of E.

By the same reasoning every infinitesimal symmetry of %, i.e. every %-field,
say X, on %, generates a (virtual) flow on the “space” Sol #. The velocity field
of this flow is given by the formula

du’
ot

=@,(X, U, .., b, ), i=1,.,m, (18)
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in which ¢ is a new independent variable (the “evolution time”) and X=€,+7,
o= (@, ..., 0.,), according to the above proposition.

It is seen from (18) that the flow on Sol % generated by X does not depend on
its trivial part Y. In other words, %-fields belonging to the same coset modulo
€D(%,,) generate the same flow on Sol #. This is why the Lie algebra D, ( ¢) of
all contact fields is to be quotiented by trivial ones in order to obtain true sym-
metries. The meaning of generating functions becomes clear from (18).

Now we note that the generating function occuring in (18) is not arbitrary
unless %,=J=(E, n). In fact, it must satisfy the following equation, supposing
that % is given by (10):

l_p¢=0 .
Here F=(F,, ..., F}) and
( A
(')Fl aF‘l
SaurDe o T Do
lF=
oF, OF,
T3 Do = T D]

is an (/X m) matrix differential operator on J*°(E, n) and bars over /r and ¢
indicate the restrictions to %,,.

It is natural now to ask: what do the notions just introduced mean when applied
to zero-dimensional diffieties, i.e. to usual manifolds (see the end of section 7).
In this case the contact distribution is zero dimensional and, therefore, ¥D (M) =0
for a manifold M viewed as a zero-dimensional diffiety. By the same reasoning
every vector field on M is contact and we see that Sym M=D(M), where D(M)
stands for the Lie algebra of all vector fields on M.

Since n=0 in the situation in question, every local chart on M, say u', ..., u”,
can be regarded as a divided one. This shows that the standard coordinate expres-
sion X=2,¢,(u) 0/du’, u=(u', ..., u™), for a vector field X on M is a particular
case of (15). Namely, we have X=C€,, for ¢= (¢, (1), ..., ¢,,(¢) ), and the system
(18) looks in this case as

%%:(p,—(ul, e u™y, i=1,..,m. (19)
But in (19) we recognize the ordinary differential equations of characteristics for
the first-order partial differential operator X= 3¢, 0/0u’. Now the analogy X > €,
(19) » (18) motivates the following principal statement:

If o=(9y, ..., 0.n) is the generating function of a symmetry ycSym %, then the
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system (18) of partial differential equations can be regarded naturally as the char-
acteristic system corresponding to the operator .

In virtue of (3), this gives the desired solution of the main problem (4) for
first-order operators:

Symmetries of partial differential equations are first-order secondary quantized
differential operators.

This is our starting point when we look for secondary quantized differential
operators of higher orders. Before, however, we will discuss some perspectives of
the symmetry theory for partial differential equations, because of its potential
importance for the future secondary calculus.

10. Digression: on symmetries of partial differential equations

Besides the just mentioned aim, in the first part of this section we will collect
some brief historical remarks in order to illustrate the previous discussion and,
also, for some terminological reasons.

The symmetry theory for differential equations was founded by Lie, who cre-
ated both the conceptual structure of this theory and the main technical tools of
it (see Ref. [23]). Unfortunately, only the two simplest, in a sense, aspects of his
work, namely Lie groups and Lie algebras, were mainly assimilated by the math-
ematical community, and then developed in thousands of works which have
nothing in common with differential equations. As we have already mentioned,
the symmetries of a differential equation by Lie are transformations of dependent
and independent variables, or the first-order contact transformations, discovered
by Lie himself, which leave invariant the chosen label of this equation. We re-
mark that the so-defined symmetry group or algebra can actually depend on the
choice of a label of the equation in question. Also, generating functions of these
classical infinitesimal symmetries can depend only on derivatives not higher than
first order. This makes clear the interrelations between classical and modern sym-
metry theories.

The first systematic attempts to apply Lie’s theory to the mechanics of contin-
uous media were made by Ovsiannikov and his collaborators about 70-80 years
after Lie’s original work (see Ref. [34]). These authors merely elaborated some
technical aspects of Lie’s theory, while its conceptual content remained un-
touched. Probably, Ovsiannikov was the first who recognized Lie’s theory behind
many special methods and tricks in use in mechanics. The so-called dimensional
analysis by Sedov and Birkhoff (see Refs. [37], [4]) is maybe the most remark-
able example of this kind.
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It looks surprising that the first attempts to generalize the classical notion of
symmetry were made almost immediately after Lie’s work, first by Bécklund and
then by Noether. For example, one can find a coordinate-wise definition of #-
fields on J*(R"*!, n) in Ref. [3] by Bicklund. Of course, the mentioned works
of Bicklund and Noether could not be well based at that time, because of lack of
experience in working with infinite-dimensional manifolds. For example,
Bicklund considered as integrable all vector fields on infinite jets. Moreover, one
can find the same deficiency in some recent works (for instance, Ref. [2]).

New times for the symmetry theory arrived with the discovery of non-linear
equations integrable via the so-called inverse scattering transform method. The
first examples of non-classical (“higher”) symmetries were found at that time.
For instance, it turned out that the higher analogs of the Korteweg—de Vries equa-
tion are, in fact, its non-classical symmetries.

Apparently, the rigorous non-classical symmetry theory starts with the work by
Kupershmidt [19] in which all é-fields on J*z were completely described. Then
the author introduced all necessary basic notions, constructions and formulas of
this theory, some of which were sketched above [44,46,47]. Later on, some of
them were repeated by Ibragimov [12,13] and used by Olver in his textbook
[33].

We call these new non-classical symmetries “higher” to emphasize that their
generating functions can depend on derivatives of arbitrary order, unlike the clas-
sical ones, which can depend only on derivatives of order not greater than one. In
the current literature the terms “generalized symmetries” (for instance, Ref. [33])
and “Lie-Bicklund transformations™ (for instance, Ref. [13]) are also used in
the same sense.

The sketched symmetry theory is presented “in action” in Ref. [56], where
attention is paid to the relevant computational aspects including the problem of
computerization,

It seems that foundations of the “higher” symmetry theory as well as the cor-
responding computational algorithms are now well established. So, the main gen-
eral problem in this field is to enlarge the area of possible applications developing
and elaborating the underlying techniques. Another very interesting problem here
is: what are the obstacles for partial differential equations to be symmetric? It is
remarkable that this problem admits a natural solution in terms of secondary
differential calculus. Unfortunately, we cannot touch upon this topic here.

On the other hand, one can imagine naturally a generalization of this theory in
which generating functions of symmetries could depend not only on derivatives
of arbitrary order but also on ‘“non-local” variables such as [ fdx, fe #. In fact,
there exist a number of problems suggesting such a generalization, and the first
few steps in this direction have already been taken [16,22,14,32,7,5].

We can apply once again the philosophy of section 4 in searching the desired
concept of non-local symmetry. This means answering the question “what are
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differential equations” in a different manner than in section 4. Below, we will
indicate very briefly how this can be done (see Ref. [16] for more details and
motivations).

Let 0, O’ be diffieties, Dim ¢ =Dim ¢'. A smap @: O— ¢’ is said to be a cov-
ering of 0 if dg@(Cp) =Cgq 4y, V0e O'. A symmetry yeSym (' is said to be a non-
local (infinitesimal) symmetry, or, more exactly, a @-symmetry of ¢. We stress
that non-local symmetries of ¢ are pairs of the form (@, x), where @ is a covering
of @ and y is a “usual” symmetry of the covering diffiety ¢’. Roughly speaking,
the reason to call the so-defined symmetries non-local is that functions on ¢’ (in
particular, the generating ones) are seen by an “observer” on ¢ as depending on
some new (““non-local’’) variables compared to those on ¢.

Example. Consider the Burgers equation % = {u,=uu,+u,,} and the heat equa-
tion % ={v,=v,.}. The Cole—Hopf substitution «#=2v,/v connecting these equa-
tions is, in fact, the label of a covering @: %, — %,,. Therefore, higher symmetries
of the heat equation can be considered as non-local symmetries of the Burgers
equation. The heat equation is linear and so every solution a(x, ¢) of it can be
treated also as a symmetry of it with generating function a(x, ¢). On the other
hand, the generating function of the corresponding non-local symmetry of the
Burgers equation is

(2a,—au) exp(— %J u dx) .

It involves a non-local variable, namely, [« dx.

The so-defined non-local symmetries can be used in the standard applications
exactly in the same way as the classical or higher ones. However, the fact that
different non-local symmetries live, generally, on different coverings lead to some
non-standard and surprising features of non-local theory. One of them is the
following.

Evidently, all @-symmetries of ¢ constitute for a fixed &@: ¢’ — ¢ a Lie algebra
which coincides with Sym ¢’. But, at first glance, it seems to be absurd to look
for the commutator of two non-local symmetries defined on two different cover-
ings. However, it turns out to be possible to find the desired commutator on a
suitable third covering. Therefore, in order to organize all non-local symmetries
of ¢ into something like a Lie algebra one must take into consideration simulta-
neously all coverings of 0.

All coverings of a given diffiety constitute in a natural way a category which we
have called a cobweb (see Ref. [16]). Now the philosophy of section 4 leads us
to answer the question what are differential equations by saying that they are
cobwebs. This answer implies many important consequences for secondary cal-
culus. But at the moment this is only a beautiful perspective to be explored
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systematically.
We remark also that, while diffieties are analogs of affine varieties of algebraic
geometry, cobwebs are analogs of fields of rational functions on them.

11. Secondary (“quantized”) functions

It seems natural to define higher-order secondary quantized differential oper-
ators as compositions of first-order ones. But going this way we meet immediately
the following difficulty.

Remember that first-order secondary differential operators are elements of the
Lie algebra Sym ¢. On the other hand, the latter are not proper differential op-
erators but cosets (equivalence classes) of them. So the question arises: how to
compose these cosets? We leave to the interested reader the task of verifying that
a direct attack to this problem fails.

Another aspect of the problem can be extracted from a similar question: on
what kind of objects do secondary differential operators act? No doubt, second-
ary differential operators should be proper operators, i.e. act on some kind of
objects. The usual functions cannot be taken as such. One can see this by trying
to define an action of the algebra Sym @ on C*( ¢ ). The only natural way to do
this is to put x(f)=X(f) for yeSym 0, XeD,(0), x=X mod ¥D(0) and
feC®(0). But this definition is clearly not correct. Namely, if X, X,eD, (0)
and X, =X, mod ¥D(0), then, generally, X, (/) #X,(f) if X, # X5.

However, it is clear that, linguistically, secondary operators should act on sec-
ondary functions and we shift this question by asking what they are. The follow-
ing analogy will help us to answer.

Let A°(M) denote the space of ith-degree differential forms on the manifold M.
The map

C=(M) -5 AY(M) (20)

(the standard differential ) provides extremal problems on smooth functions on
M with the “universal solution”. Treating smooth manifolds as zero-dimensional
diffieties we see that the analog of (20) should be a map which provides varia-
tional problems for multiple integrals with the universal solution. But this is the
well-known Euler-Lagrange map:

variational functionals, & differential
13 : 3 - ( 2 1 )
or “actions operators

i.e. & associates with an “action” [, L dx, --dx, the left-hand side of the corre-
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sponding Euler-Lagrange equation. Therefore, this analogy between (20) and
(21) suggests to adopt “actions” as secondary (or “quantized”) functions. This
idea is to be corrected because ““actions”, as understood in the standard way,
contain a detail, parasitic for our aim, to be eliminated. This detail is the exact
reference to the domain of integration . So, our next problem is to find a mean-
ing for hieroglyphs of the form [ L dx,--dx, (without “£”!). We will solve it by
interpreting them as some kind of cohomology classes (for more motivations and
details see Ref. [9]). But before that we need some preliminaries.

Let ¢ be a diffiety, Dim ¢=n and let A°(©) denote the C*( ¢ )-module of all
ith-degree differential forms on ¢. We denote by $4°( ¢) the submodule of A°( )
consisting of forms whose restrictions on the contact distribution of ¢ vanish. In
other words,

CA(O)sw<w(Y,,.., Y)=0, 3Y,, .. Y,e¥€D(0).
We put
A(O)=A(0)] 64(0) .

Elements of A(©) are called horizontal differential forms on ¢. Evidently,
A(0)=0ifi>n.

It is easy to see that d( €A4°(0)) = €A’ (0) and, therefore, the standard dif-
ferential d: A° (@) - A"+ (@) induces the horizontal differential

d:A(O)>A+'(0) .

Of course, d>=0 and this enables us to introduce the horizontal de Rham com-
plex of @:

0-A°%(0)=C>(0) -5 A1(0) 5% 17(0)>0.

Cohomologies of this complex are called horizontal de Rham cohomologies of 0.
They are denoted by H'(0), i=0, 1, ..., .
Finally, we accept the following basic interpretation:

Secondary (or “quantized’) functions on O are elements of the cohomology group
o).

In other words, we consider the cohomology group H"(¢), Dim ¢ =n, to be
the analog of the smooth function algebras in Secondary Calculus.

To justify the choice made we will describe in coordinates the ‘“horizontal”
constructions, just given, for ¢ =J>(E, n). First of all, we observe that the coset
of a differential form weA (J*(E, n)) modulo ¥A'(J=(E, n)) contains only
one element of the form
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p= Z akl-‘-ki(x’ u, ..., uin ) d‘xkl AN d-xk,' ’
l<ki<-<ki<n
where ay,..,,e C*(J>(E, n)). The characteristic feature of such forms is that the
differentials du’, ..., duZ, ... do not enter into their coordinate expressions. There-
fore, the module A°(J=(E, n) ) can be identified locally with the module of forms
of this type.
Under the identification made, the horizontal de Rham differential d looks as
ap= Z Ds(akl.__k,.) dxs A dxkl A A dxki .
1en ki

s.Kk1,...,
In particular, every horizontal (n—1)-form can be represented uniquely as

p=Y (1) 'a;dx; A adx; A ndx,, a,eC®(J=(E,n)),

and
dp=div(4) dx, dx,,

where A= (a,, ..., a,) and div A=2, D;(a;). Also, horizontal n-forms look as
L(x,u,.,u',...)dx, A~ adx,, LeC®(J™(E,n)),

and one can recognize lagrangian densities in them. So, we see that the horizontal
cohomology H"(J*(E, n)) can be identified locally with the linear space of
equivalence classes of lagrangian densities on J*(E, n) with respect to the fol-
lowing relation:

Li~L, <« L, —L,=divA4 forsomeA.

On the other hand, actions [, L; dx,--dx,, i=1, 2 are equivalent in the sense that
they lead to identical Euler-Lagrange equations iff L, ~ L,. This is independent
of the choice of . For these reasons it is natural to identify hieroglyphs
I L dx,---dx, with n-dimensional horizontal cohomology classes.

We conclude this section noting that similar reasonings are valid for arbitrary
diffieties as well.

12. Higher-order scalar secondary (“quantized”) differential operators

First of all, we must justify the above adopted definition of secondary func-
tions, demonstrating that, indeed, first-order differential operators act naturally
on them. In other words, we must look for a natural action of the algebra Sym ¢
on the space H"( ¢ ). This, however, can be done straightforwardly.

First, note that, if XeD,(0), we €4°(©0) and L, denotes the Lie derivative
along X, then L,(w)e €4°(0) as results from definitions and the fact that
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GA(0)= %A (O) AN A-1(0), i>1.

This allows us to define the Lie derivative on horizontal forms by passing to
quotients:

Ly:A(0)>A(0).
Next, let
xeSym ¢, y=Xmod ¥D(¢) forXeD, (0),
OcH"(0), 6=wmoddA"~'(¢) forwed"(0).
We define now the action of y on 6 by putting
x(8):={Ly(w) mod dA"~'(0)}eH"(0),

where L, denotes the Lie derivative along X. The correctness of this definition
follows directly from the following two facts:
(i) Ly(w)edA"'(0) if weA"(©) and Ye €D(0),

(ii) Ly-d=d-Ly.

They both are direct consequences of definitions.

Now we see that the above definition of secondary functions correlates nicely
with other “secondary” constructions and, therefore, can serve as an example in
proceeding to more complicated ‘“‘secondary” notions. For example, let us ob-
serve that we have succeeded to define a correct action of one quotient [namely,
Sym 0=D.(0)/¥D(0)] on another [namely, H"(¢)=A"(0)/dA"~"(0)]
owing to:

1. D( @) consists of first-order differential operators which act on the C*( ¢)-
module A”7( ©) leaving d4”~'(¢) invariant;

2. the images of A”(0) under the action of first-order operators belonging to

#D(0) are contained in d4"~'(©).
We will get the necessary generalization to higher-order secondary differential
operators simply by replacing the words “first-order” by “kth-order” in 1 and 2
above. More exactly, let Diff (47(¢)) denote the C=(¢)-module of all
(“‘usual”) differential operators of order <k acting on A"(¢) and put

Diff,.(¢) = {deDiff,,(4"(0) ) |4(dA"~ "' (0)) c dA"~ ' ()},
Diff, (¢) ={4eDiffy(4"(0) ) | 4(A"(0)) =dA"~' (0)} .

Then the space of all scalar secondary (“‘quantized”) operators of order <kon ¢
is defined to be the quotient

Diff (¢ =Diff, (0)/Diff () . (22)

Of course, every secondary operator A Diff,.(¢) can be understood as an actual
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operator
A:H"(0)>H"(0)
acting on secondary functions. In fact, if
A= mod Diff, (0) for 6&eDiff, (0),
O=wmod dA"~'(¢) for wed"(0),
then the horizontal cohomology class
A(0): ={6(w) mod dA"~'(0)}

is well defined, i.e., does not depend on the choice of the representatives d and w.
For ¢ =J(E, n) the so-defined secondary differential operators admit the
following coordinate description. Operators of the form

k o &
all’s ————— 4const.,
s;l n-z-qg oo P, "-apiis
0105
where g, ..., o, are multi-indices, are called vertical (with respect to the chosen
coordinate system ). Then it can be proved that every coset

A={d mod Diff, (J*(E, n) ) }eDiff(J=(E, n))

for 6e Diff, (J=(E, n) ), contains only one vertical operator. So, the quotient (22)
representing secondary differential operators can be identified locally with the
set of all vertical secondary operators. These last operators of order <k can be
presented in the form

€= Zl Y Z(V)-0/0p,,
where V= (V!, V2, ..., V™), V'eDiff, _ , # (E, n), are arbitrary vertical operators
and

.,%( Vl)= [Du: ceey [Dins Vl]] 5

where o= (i, ..., i,,). The generating operator Vis the higher-order analog of the
generating functions for evolutionary derivations but, unlike the latter, it is not
defined uniquely if k> 1.

Secondary operators of order > 1 are not reduced to compositions of first-order
secondary operators. This fact is instructive in connection with the discussion at
the beginning of section 11.

We note, also, that an explicit description of secondary differential operators
on arbitrary diffieties is a much more difficult problem.

Further details, results and alternative views concerning secondary differential
operators can be found in Ref. [9].
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Finally, turning back to question (4) we can exhibit the simplest kth order
linear secondary (quantized) differential equations as

A(H)=0, 4eDiff(0), HeH"(0).

It must be emphasized, however, that these equations form only a very special
class of secondary differential equations. For instance, differentials d$9=
d?4( 0) of the ¥-spectral sequence (see sections 13 and 14) give us other exam-
ples of secondary quantized differential operators and, therefore, secondary dif-
ferential equations. One of them looks as

é"(JLd.x):O,

where [L dxeH"(©) and & is the Euler operator assigning to an action
J L dxeH"(0) the corresponding Euler-Lagrange equation. This is due to the
fact that £=d%" (see section 14). We note also that operators d2? are of finite
order, say n(k), when being restricted to elements of the kth filtration, but
n(k) - oo when k— co. For example, n(k) =2k for the operator d¥" = &.

13. Secondary (“quantized”) differential forms. 4-spectral sequences

In this section we will consider another aspect of secondary calculus, namely,
secondary (“quantized”) differential forms. What are they? This is a more dif-
ficult question than the one about secondary differential operators we have al-
ready discussed. For this and other reasons we will omit here the preliminary
motivations showing, as before, how to arrive at exact definitions. However, some
““a posteriori” justifications will be given.

Let @ be a diffiety. Adopting the notations of section 12 we consider the algebra

A*(O0)= 3 A(0)

iz0
of all differential forms on ¢ and its ideal

A (0)= Y A'(0) .

iz0

Denote by €“A*( ¢) the kth power of this ideal, which is, by definition, the linear
subspace of A*( () generated by all products of the form , Aw; A Ay,
w;e €A*(0). The ideal ¥4*( ©) and, therefore, all ideals €*A4*( () are stable with
respect to the exterior differential d. So, we get the following filtration:

A*(0) o GA*(O) > €*A*(O) > > FA*(O) > - (23)
of the de Rham complex of ¢ by its subcomplexes { *A*(©), d}. The ideals
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@“A*( ©) are naturally graded,
(gkA*(@)= Z fg"Ak“((p) ,

s=0
where
EGEAF(O)= GFA*(O) N AFF3(0) .

Now we will achieve our goal by making use of standard spectral sequence ar-
guments applied to the filtration (23) (see, for instance, Ref. [31] for the general
theory ). We start with the quotients

EB9(0)=GPAPT4(0) ] €7T'APT(O)
connected in succession with the differentials
dge:E§*(0)~E§7+'(0)

which are natural quotients of the exterior differential d. They all constitute a
complex, namely,

Eo(0)= Y EBU(0), do= 2 dB?, do:Eg(0)—Ee(0),
pPg

p.q

which is called the zero term of the spectral sequence corresponding to the filtra-
tion (23). Its first term is then defined to be the cohomology of the zero term.
More exactly, we put

E?4(0)=ker d§?/im d§?~!

and note that the exterior differential d generates by passing to quotients the
differentials

dp9:EP(0)-EFTH(0) .
The first term is now defined to be the complex

E (0)= ZElf’q((g) , 4= Zd’f’q, di:E\(0)-E (0).
p.q pq

Continuing this procedure one can define the rth term
E(0)= Y E?*(0), d,= Y 9,
p.q p.q

A9 EP9(0) - ERTHa=r+1(0)

as cohomology of the (r— 1 )th term.

The so defined system {E,(0), d,} of complexes is called the %-spectral se-
quence of the diffiety ¢. It is often convenient to display the terms of a spectral
sequence in a diagram as shown on Fig. 2. For example, if Dim ¢ =n, then the
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4
A

E, (M)
0

o aen] - Jw]

Fig. 4.

structure of the zero term of the %-spectral sequence of ¢ is illustrated by the
diagram of Fig. 3; all its non-trivial terms E4?((¢) are situated in the shaded
region. The same picture is obtained forall E,( @), r> 0, as is easily deduced from
the definitions.

Definition. Elements of E, ( ¢) are called secondary (“quantized”) differential forms
on the diffiety .

Some reasons in favor of this interpretation are as follows. Let M be a finite-
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dimensional manifold considered as a zero-dimensional diffiety (see section 7).
Then the diagram for the first term of its #-spectral sequence looks as shown in
Fig. 4. Moreover, d2° =d. In other words, we see that the de Rham complex of M
coincides with the (generally) non-trivial part of the first term of its %-spectral
sequence.

We can observe that standard constructions and formulae connecting “usual”
vector fields and differential forms are also valid for their secondary (“‘quan-
tized”) analogs. For instance, the insertion operator of secondary vector fields
(“symmetries”) into secondary differential forms as well as the corresponding
Lie derivatives are well defined. Moreover, they are connected by means of the
secondary analog of the infinitesimal Stokes formula

LX=ix°d+d°ix,

in which the exterior differential d is to be replaced by its secondary analog, i.e.
by d,(0).

Finally, we remark that secondary differential forms are bigraded objects un-
like the “usual” ones which are only monograded. The reason is clearly seen from
the above diagrams. This is an illustration of the fact that secondary objects are
richer and more complicated structures than their “primary” analogs. The same
idea can be expressed alternatively by saying that the “usual” (or “primary”)
mathematical objects are degenerate forms of the secondary ones. This statement
can be also viewed as the following mathematical paraphrase by the Bohr corre-
spondence principle:

Dim—0
—

Secondary Calculus Calculus

The cobweb theory (see the end of section 10) allows us to give an exact mean-
ing to “Dim— 0. This is because the Dimension (not dimension!) is an R-valued
function in the framework of this theory.

14. Digression: how does the ¢-spectral sequence work?

In this section we collect some results which demonstrate secondary differen-
tial forms “in action”. The following two diagrams illustrate how the term E, ( ©),
i.e. secondary differential forms, reflect the structure of @. They make more pre-
cise the general estimate of the first term given by the diagram of Fig. 3. In the
general case, the number of non-trivial rows on the diagram of E, (%),
% ={F=0}, is equal to the highest number of non-trivial Spencer cohomology
groups of the universal linearization operator /- (see section 9).

Now we wish to discuss the meaning of some terms E%( ¢0) of particular inter-
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est. First of all, we have
EY(0)=H'(0)
(see section 11) as is easily seen from definitions. In particular, it follows that

elements of the term E9"( %) are “actions” of variational problems constrained
by the equation # (see section 11). Moreover, if e E¥"(%.,) is an action, then

A" (£)=0 (24)

is the corresponding constrained Euler-Lagrange equation. This gives a solution
of the “direct” problem of the calculus of variations in the general cases of local
constraints, i.e. given by means of differential equations. In particular, Eq. (24)
incorporates automatically the theory of Lagrange multipliers.

The standard spectral sequence arguments applied to diagrams of the above
type allow one to solve immediately the so-called triviality problem for lagrang-
ians both in local and in global settings. This problem is to describe those “ac-
tions”, or lagrangians, to which trivial Euler-Lagrange equations correspond. The
answer, say, for free ( =non-constrained) problems is that in this sense globally
trivial lagrangian densities are of the form w+dp, were w is a closed differential
form on J!(E, n) and dp s a full divergence term (see section 11).

Let now % < JX(E, n) be the Euler-Lagrange equations corresponding to a la-
grangian L H"(J*(E, n))=EY"(J*(E, n)). Then E9"(%,,) consists of all la-
grangians alternative to ¥. To compute all alternative lagrangians one can use
spectral sequence arguments as follows.

Let % satisfy the conditions indicated on the diagram of Fig. 6. We also sup-
pose that % is formally integrable. Then the fact that the diagram for £, (%)
consists of two non-trivial rows leads directly to the following exact sequence:

0 EY"=1(8,)~H"(¥)—~ES" (%)~ E3=1(4,)
SH™ (@) ES(B)
K, n
o EETRN(G) S HR () (25)
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where H'(%) denotes the ith de Rham cohomology group of #. Terms
E5"='(4..) of this sequence can be evaluated or even computed exactly by using
Spencer cohomology type techniques. This gives a solution of the alternative la-
grangian problem for a given % as well as of a number of similar problems. The
most famous of them is the inverse problem of the calculus of variations. This is
the problem of recognizing Euler-Lagrange equations in the case when the con-
straints are given by #. Its solution is equivalent to the computation of
E}"(%..), which is another term of (25). Also, the description of symplectic
structures for field theories constrained by % is reduced to computation of the
term E3"( %) of (25).

Going back to the first term of the #-spectral sequence we note that the term
E{"-1(%,,) can be interpreted as the space of all conservation laws for solutions
of %. This observation allows one to develop a consistent theory of conservation
laws ( =“conserved currents” =““integral of motion’’) independently of any sym-
metry considerations, which works as well in situations where the latter cannot
even be applied. This theory is sketched below for formally integrable equations
% satisfying assumptions which guarantee the two-row diagram for E, (%,.) (Fig.
6).

First of all, the diagram of Fig. 6 shows that

H*"(¥)=E$"~ (%) c EY"~ (%) .

So, cohomology classes 2 H*~! (%) can be interpreted as conservation laws of
%. We call them rigid. Also, we see that the kernel of

A1 B (%) ~EL ! ()

consists of these rigid conservation laws. They cannot distinguish two solutions
of % if one can be deformed into another. For this and some other reasons we can
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neglect them. On the other hand, conservation laws are uniquely characterized
up to the rigid ones by their images under the differential d?"~'. This motivates
us to introduce the following basic notion: the image d$"~'(Q) c E}""~' (%) of
a conservation law Qe E{"~1( 2, ) is called its generating function.

The following isomorphism is fundamental in finding generating functions:

Eln=Y(a,)=ker [,

where ¥ ={F=0}, lr=1p| a, (seesection 9) and ““+”” stands for formal conjuga-
tion. So, generating functions of conservation laws can be found by solving the
equation

Ity=0. (26)

This is the most efficient general method of finding conservation laws for con-
crete equations (see Ref. [56] where it is demonstrated “in action”).

Remark. In fact, not all solutions of (26) are generating functions of conserva-
tion laws. However, we can make use of the differential d}""~! to throw away
“unnecessary”’ solutions of (26).

Now we note that generating functions of symmetries (see section 10) and of
conservation laws satisfy the mutually conjugate equations /=0 and /%y=0.
Also, we have /= [} for Euler-Lagrange equations. This demonstrates clearly the
nature of the intimate relations between symmetries and conservation laws for
Euler-Lagrange equations as given by the classical theorem of Noether. But now
we see that the same relations hold for a much wider class of equations, which
can be called conformly self-adjoint, i.e., such that

I—I‘:A"I—F’

where A is an invertible operator on %,.. The equation u,=u, is a simple example
of that matter for which A= —1.

An interpretation of the term E, (%) is that it consists of characteristic classes
of bordisms composed of solutions of #. The standard “differential characteris-
tic classes” theories can be obtained in this way under a suitable choice of # (see
Ref. [54]). This approach leads, however, to finer characteristic classes, for in-
stance, special characteristic classes. We illustrate this topic for solutions of the
(vacuum) Einstein equations, or Einstein manifolds. Let % be the Einstein sys-
tem on a manifold M. Then it is possible to show that

%, /Diffeo(M)=%", ,

where Diffeo (M) is the diffeomorphism group of M, acting naturally on %, and
%'’ is a certain system of partial differential equations. In fact, %’ does not depend
on M and, therefore, its solutions are just diffeomorphism classes of Einstein
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manifolds. The corresponding special characteristic classes are elements of
EN%).

The %-spectral sequence machinery was discovered by the author while trying
to solve the aforementioned local and global problems of the calculus of varia-
tions and of conservations laws [46,50]. A very small number of works were
published since then in this direction and we conclude by listing some of the most
important ones [45,46,50,54,38,40,41,29,51].

15. Quantization or singularity propagation? Heisenberg or Schridinger?

In the preceding pages we have reached the coasts of “‘terra incognita™, i.e.
diffieties and secondary calculus on them, whose existence was predicted by the
linguisticized version of the Bohr correspondence principle as formulated in sec-
tion 3. Being the exact analog of algebraic geometry for partial differential equa-
tions this branch of pure mathematics deserves to be explored systematically,
maybe much more so than algebraic geometry itself and independently of the
possible physical applications that stimulated the expedition. Later on we will
discuss briefly some other topics related to secondary calculus. But now it would
be timely to reexamine how much we have approached the solution of the quan-
tization problem for quantum fields after having got secondary calculus at our
disposal.

It should be stressed from the very beginning that the passage to the “linguis-
ticized” version of the Bohr principle inevitably cost us the loss of its original
physical context. On the other hand, the accumulated experience in secondary
calculus convinces us that every natural construction in the area of classical Cal-
culus has its secondary analog, which can be found by means of a more or less
regular procedure. So, one can expect to deduce fundamental QFT equations by
“secondarizing’ a sample situation in which both the source and the target of the
Bohr principle belong to the area of classical Calculus.

Evidently, quantum mechanics of particles is exactly such a sample due to the
fact that the Bohr correspondence principle here starts from differential (the
Schrodinger) equations and finishes also at differential (the Hamilton) equa-
tions. However, in this case the Bohr principle is to be reinterpreted exclusively
in terms of Calculus to become secondarizable. This is the key point.

The desired reinterpretation is not obvious and, in particular should not be
based on “A—-0, formal series on H, deformations, Hilbert spaces and similar
things. We accept formula (2) to be the first approximation. Then our approach
to QFT can be summarized as

FIELD QUANTIZATION=CHARZ(,, , (27)

where & stands for ““secondarization”. Hence, the question to be answered first
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is: what is the solution singularity type (or types) outlined in section 3?

The last problem belongs to the theory of solution singularities of partial dif-
ferential equations, which has not been elaborated enough up to now to provide
us with the immediate answer. So, we postpone the direct attack to the future and
limit ourselves here to a quick trip through the theory of some special solution
singularities called geometric. Besides all other, the reader can conceive from this
model more precise ideas on the general theory as well as more detailed motiva-
tions for formula (2). But first we will permit ourselves some remarks of an his-
torical nature.

As it is well known, two different approaches, one by Heisenberg and the other
by Schriodinger, were at the origin of quantum mechanics. In modern terms, the
first of them is based on a formal non-commutative deformation of the commu-
tative algebra of classical observables while the latter proceeds from an analogy
with optics. They both were proclaimed and even proved equivalent and this is
just the point we would like to call in question now. Namely, it seems that a more
exact formulation of this equivalence theorem would be:

The Schrodinger point of view becomes equivalent to the Heisenberg one after being
reduced appropriately.

Below some brief general justifications of this assertion are given and the reader
is asked not to confuse “approach” with “picture” in what follows.

First, the Heisenberg approach is “programmed” in the language of operator
algebras while that by Schrodinger is in Calculus. The former is non-localizable
in principle and this is its great disadvantage in what concerns applications to
fundamental (non-technical!) problems of physics. In particular, the passage from
one space-time domain to another cannot be expressed in terms of this language
only (see, for instance, Ref. [10]). But, evidently, fundamental physical theo-
ries, both at classical and quantum levels, must be localizable in this sense by
their nature. On the other hand, Calculus is the only localizable language due to
the fact that localizable operators are just differential ones.

Second, in the Heisenberg approach classical mechanics appears to be a limit
case of quantum mechanics or, vice versa, the latter is viewed to be a non-com-
mutative deformation of the former. In particular, this means that they both are
treated to be things of the same nature that differ from each other by a parameter.
This is not so in the framework of the Schrédinger approach. In fact, as follows
from the general mathematical background of the passage from wave to geomet-
rical optics, the latter appears to be a particular aspect of the former. So, applying
the analogy between quantum mechanics and optics discovered by Schrodinger
one can conclude that

classical mechanics is a particular aspect of quantum mechanics.
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In this connection it would be to the point to note that Planck’s constant is a true
constant and, therefore, “A—0” can serve as a heuristic trick but not as a ground-
stone of the theory.

Thus these are, shortly, the reasons in favor of the Schrddinger alternative. On
the other hand, it is clearly seen that it had no chances to be realized mathemati-
cally in the building period of quantum electrodynamics and other quantum field
theories. So, the Heisenberg alternative remained, due to its formality and ab-
straction, the only possible way for progress of these theories. This was its inva-
luable historical merit that seems to be going to be exhausted now. Finally, we
add that this paper can be regarded also as an attempt to provide the Schrodinger
approach with the mathematical tools which are necessary to extend it to QFT.

16. Geometric singularities of solutions of partial differential equations

In this section we present geometric singularities of solutions of (non-linear)
partial differential equations and some general results on them that are relevant
to our discussion of the quantization problem. Some examples illustrating the
general theory and, in particular, the mechanism connecting wave and geometri-
cai optics are collected in the next section.

Solution singularities which we call geometrical arise naturally in the context
of the theory of multivalued solutions of (non-linear) partial differential equa-
tions. There are different ways to realize strictly the idea of multivaluedness and
we choose that one which is based on the notion of R-manifold. This is as follows.

Recall that a submanifold W < J*(E, n), 0< k<o, is called integral if T,W < C,
for every 6eJ*(E, n) (see section 6). An integral submanifold W< JX(E, n) is
called Jocally maximal if no open part of it belongs to another integral submani-
fold of greater dimension.

Definition. A locally maximal n-dimensional integral submanifold of J*(E, n) is
said to be an R-manifold.

To motivate this definition we note that manifolds of the form L, (see sec-
tion 5), which are basic for the geometric theory of partial differential equations,
are completely characterized by the following two properties:

(1) L4, is a locally maximal integral submanifold,

(i1) the restriction of the projection

Qe i_y J*(E, n)>J*=(E, n)

on L, is an immersion.
So, omitting (ii) we get the multivalued analogs of submanifolds L, i.e. R-
manifolds.
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Remark. There exist different types of locally maximal integral submanifolds of
J*(E, n) which differ from each other by their dimensions. For instance, one of
these types is formed by fibers of the projection a, ,_,. These are integral sub-
manifolds of the greatest possible dimension.

Informally R-manifolds can be treated, generally, as non-smooth n-dimen-
sional submanifolds of E whose singularities can be resolved by lifting them onto
a suitable J*(E, n).

Now we define a multivalued solution of a partial differential equation
% < JX(E, n) to be an R-manifold, say W, belonging to one of its extensions Ys)s
0<s<oo: W %, c J*TS(E, n).

If W< J*(E, n) is an R-manifold then its singular, or branch points are defined
to be the singular points of the projection e, : J*(E, n) ->J*~'(E, n) restricted
to W (see Fig. 7).

We stress here that W is a smooth ( =non-singular) submanifold of JX(E, n)
and the adjective “singular” refers to the projection o 4 _ .

A very rich and interesting structural theory stands behind these simple defi-
nitions. This cannot be reduced to the standard singularity (or catastrophe) the-
ory. On the contrary, the latter is a particular degenerated case of the former.

We start with a classification of geometric singularities, which is, of course, the
first structural problem to be considered. According to “the general principles”
we have to classify s-jets of R-manifolds in JX(E, n) for a prescribed natural s
under the group of contact transformations of this jet space. The simplest case
s=1 is sufficient for our purposes.

Let W< J*(E, n) be an R-manifold and fesing W. The subspaces of the tan-
gent space T,J*(E, n) which are of the form T, W are called singular R-planes (at
8). So, our problem is to classify singular R-planes.

Let P=T,W be a singular R-plane at 6. The subspace P, of P which consists of
vectors annihilated by o, ,_, is called the label of P. It turns out that singular R-
planes are equivalent iff their labels are equivalent. So, the classification problem
in question is reduced to the label classification problem. We define the fype (sin-
gular or not) of an R-plane to be the dimension of its label:

type P=dim P,, O<type P<n.

Evidently, type P=0<P is non-singular.
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Fig. 7.
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Example. Branched riemannian surfaces are identical with multivalued solutions
of the classical Cauchy—Riemann equation. Let W be one of them. Then the set
sing W consists of a number of isolated points, say 6,. In this case (type P,)=2
for P,=T, W.

The final result of the label classification is as follows [55].

Theorem. Label equivalence classes of geometric singularities are in one-to-one
correspondence with isomorphic classes of unitary commutative R-algebra so that
the dimension of a label is equal to that of the algebra corresponding to it.

Recall that every unitary commutative finite-dimensional algebra splits into a
direct sum of algebras F,, k=1, 2, ..., where F,, denotes the unitary F-algebra
generated by one element ¢ such that =0, £*~! %0 and F=R or C. Such a split-
ting is not unique but the multiplicity numbers showing how many times a given
algebra F,, enters it do not depend on the splitting. So, these multiplicity num-
bers determine completely the isomorphism class of the algebra in question.

Below we speak of A-type geometric singularities referring to the commutative
algebra A corresponding to it by the above theorem.

Examples. 1. Since the only one-dimensional R-algebra is R itself, there exists only
one label type of geometric singularities with a one-dimensional label. This type
is realized by R-manifolds projected on the manifold of independent variables as
foldings. For this reason it is denoted by FOLD. The standard theory of charac-
teristic covectors takes a natural part in the FOLD-singularity theory.

2. There are just three isomorphic classes of two-dimensional unitary commu-
tative algebras, namely, that of C, R(,, and R®R where (see above) R, =
{1, £]&>=0}. For equations with two independent variables C-type geometric sin-
gularities look as ramification points of riemannian surfaces and as (n—2)-di-
mensional families of such ones for # independent variables. In four-dimensional
space-time of C-type singularity can be viewed as a vortex around a moving curve.
This sets fire to the suspicion that C-singularities could play an important role in
the future turbulence theory.

The next question that arises immediately when studying concrete equations
is:

What label type of geometric singularities does a given system of partial differen-
tial equations admit?

This is an essentially algebraic problem which we illustrate with the following
examples to omit the general discussion.
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Examples. 1. A system of partial differential equations admits FOLD-type sin-
gularities only if it admits non-zero characteristic covectors. For instance, solu-
tions of elliptic equations do not admit FOLD-singularities.

2. Let % be a second-order scalar differential equation of two independent
variables. Then it admits only one of the three types of two-dimensional singular-
ities mentioned in the preceding example. This is the C-type for elliptic equa-
tions, the R, ,-type for parabolic equations and R®R-type for hyperbolic equa-
tions.

A more delicate problem is to describe submanifolds of the form singzW for
multivalued solutions W of a given differential equation and a given solution
singularity type X. Here sing; W < W stands for the submanifold of Z-singular
points of W. In other words, we are interested in determining the shapes of 2-
singularities admitted by a given equation.

The solution of this problem can be sketched as follows: Let a label solution
singularity type 2 be fixed; then it is possible to associate with a given system of
partial differential equations # another system %; such that submanifolds of the
form singsW, W being a multivalued solution of #, satisfy % and, conversely,
every solution of % is of the form sing,W for (possibly formal) multivalued
solutions of %.

If # is of n independent variables, then % is of n—s independent variables
where s is the dimension of the label 2. The construction of equations % is not
simple enough to be reproduced here. Instead, in the next section we exhibit some
examples from which the reader can conceive an idea of them. Informally speak-
ing, if % describes a physical substance, say a field or a continuous medium, then
%;- describes the behavior of a certain kind of singularities of this substance, that
can be characterized by the label singularity type Z. In the case when % refers to
independent space—time variables the equation % describes the propagation of
2-type singularities in the substance in question.

Denote by CHAR ;- the functor that associates the equation % with a given
equation %. The problem:

to what extent does the behavior of the singularities of a given type of physical
system determine the system itself?

is, evidently, of fundamental importance and the search for the domain of inver-
tibility of the functor CHAR ; is maybe the most significant aspect of it. The fol-
lowing result gives an instructive example on this matter.

The FOLD-reconstruction theorem. Every hyperbolic system of partial differential
equations ¥ is determined completely by the associated system %oy p
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In other words, a hyperbolic system % can be written down explicitly only if the
system %o is known.

The above theorem can be reformulated by saying that the functor CHARg; p
is invertible on the class of hyperbolic equations. On the other hand, this functor
is not invertible on the class of elliptic equations due to the fact that %, p is
empty for any elliptic %.

The general “singularity reconstruction problem’ we are discussing may have
various flavors depending on the chosen, not necessarily geometric, solution sin-
gularity type. For instance, the classical problem of fields and sources can be
viewed as its particular case. Another remarkable example can be found in the
history of electrodynamics. Observing that the elementary laws of electricity and
magnetism such as that by Coulomb or Faraday describe the behavior of some
kind of singularities of electromagnetic fields, we see Maxwell’s equations to give
the solution of the corresponding singularity reconstruction problem.

The importance of multivalued solution theory comes in evidence also due to
its relations with the Sobolev-Schwartz theory of generalized solutions of linear
partial differential equations. These relations are based on the observation that
one can get a generalized solution of a given linear differential equation simply
by summing up branches of a multivalued solution of it. As a matter of fact, the
procedure assigning the generalized solution to a given multivalued one is more
delicate than a simple summation and is based on the choice of a de Rham type
cohomology theory and a suitable class of test functions. Maslov-type character-
istic classes then arise as obstructions to perform this procedure and their nature
depends on the cohomology theory chosen (see Refs. [26,52,28]).

It is worth stressing that generalized solutions assigned to multivalued ones
with no FOLD-singularities are, in fact, smooth, i.e. not properly generalized
functions. This correlates nicely with the well-known fact that generalized solu-
tions of elliptic equations are exhausted by smooth solutions, i.e. one-valued ones,
while such equations admit non-trivial multivalued solutions (say, branched
riemannian surfaces for the Cauchy-Riemann equation) with non-FOLD-type
singularities. These and other similar facts show multivalued solutions to be a
satisfactory substitution for generalized ones for non-linear differential equations
where the latter cannot even be defined. Moreover, the former are a finer tool
also in the framework of the linear theory.

Further details and results on the topics touched upon in this section the reader
can be found in the book [17] and in the author’s lecture [52]. For a systematic
exposition see the forthcoming paper [55]. Many other interesting aspects of so-
Iution singularity theory are presented in the recent review by Lychagin [28].

Multivalued solutions were introduced in the author’s work [43] followed by
a technically simple but instructive work [18] by Krishchenko. Afterwards, a
significant series of works by Lychagin appeared. Unfortunately, these names al-
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most exhaust the list of contributors in this field. For a full bibliography see Refs.
[17,28,55].

17. Wave and geometrical optics and other examples

In this section we illustrate the generalities of the previous one with some sim-
ple examples taken from Ref. [24]. We enter here neither into technical details
nor into interpretations of the exhibited equation, referring the reader to Ref.
[24].

17.1. X-characteristic equations

Let 7n: E- M be a fibering, % — J*n be a system of differential equations and X
be a label solution singularity type. The 2-characteristic system of X is the system
of differential equations whose solutions are of the form n,(singW) where
m,:J*n— M is the natural projection and W is a multivalued solution of #.

Denote the X-characteristic equation of % by #% and observe that the whole
system % is obtained by adding to #% some other equations called complemen-
tary. If % refers to independent space—time variables, then #% governs motions
of Z-singular locuses of the physical system in question while the complementary
equations describe the evolution of the internal structures of X-singularities.

Classical characteristic equations, whose theory was initiated by Hugoniot and
then developed systematically by Hadamard (see Ref. [11]), arise naturally in
the study of uniqueness of the initial data problem. As we have already men-
tioned, the uniquenesss problem is included in the theory of FOLD singularities.
So, it is not surprising that FOLD-characteristic equations coincide with classical
ones. We recommend Refs. [20,21,35], in which first attempts to apply classical
characteristic equations to quantum mechanics and relativity were made.

The coordinate-wise representation of FOLD-characteristic equations looks as
follows. Let the basic equation % be given by (10) with Fie %, j=1, ..., [. Intro-
duce the characteristic matrix of % to be

r 3
oF, oF,
|z1|z=k au}; p |a|z=/< ouy
My = ,
oF; - oF; -
L|a|z=k au};p mZ:k ouy J

where p’=p}, ..., pi» for o= (i, ..., i,). The FOLD-characteristic equation be-
comes trivial, i.e. 0=0, for /< m. If I > m we get the FOLD-characteristic equation
#%oLp of Z-singular locuses representable in the form x,=¢(x,, ..., X,_, ) by sub-
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stituting d¢/ox; for p,, i=1, ..., n—1, and —1 for p, in .#; and then equating to
zero all mth-order minors of the matrix so obtained.

Remark. Strictly speaking the above procedure is valid only for a formally inte-
grable #.

17.2. Maxwell equations and geometric optics

Consider the vacuum Maxwell equations (= ‘“‘wave optics™):

div E=0, rotE=—la—H,
¢ 0Ot
divH=0, rotH=la—E.
¢ ot

In this case n=4, M =6, [=8. So, the characteristic matrix is (8 X 6) rectangular
and a direct computation shows that all its sixth-order minors are of the form
1 2
A (p% +p3+p3— ;1&) ,
with A=0 or *p, p,. So, putting x,=1¢ we see that the equation %01 p coincides
with the standard eikonal equation

2 2 2
dp dp ) op ) 1
— )+l =) H =) == 28
(ax, ) (6x2 0x3 c? (28)
In such a way we obtain the interpretation of this well-known fact in terms of the
solution singularity theory. However, this gives us something more, namely, the

complementary equations that compose together with the eikonal equation the
whole system %o p. These look as follows:

div Az =grad ¢-rot Ay, ,

rot hp +div hy-grad g=grad g Xrot Ay, .
Here /g and A,; are singular values, i.e. values on the singular surface t=¢(x,, x>,
x3), of the electric and magnetic fields, respectively.

17.3 On the complementary equations

It is obvious from the procedure of section 17.1 that very different equations
can have the same characteristic equation. For example, the eikonal equation
(28) 1s also the characteristic equation for the Klein-Gordon equation,
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= w5 —du—m?*u=0.

So, it is not possible to reconstruct the original equation knowing only its char-
acteristic equation. In view of the Reconstruction Theorem of the previous sec-
tion the only information one needs for the reconstruction is contained exactly in
the complementary equations. Therefore, an independent and direct physical
interpretation of quantities entering into these equations would allow one to make
up the information that is lacking to solve the corresponding singularity recon-
struction problem. One can see now that this singularity interpretation problem
becomes very important. For example, a solution of this problem for continuous
media would provide us with a regular method

to deduce equations governing a given continuous medium proceeding from obser-
vations of how singularities of a given type (or types) propagate in it.

This would be an attractive alternative to the present phenomenological status of
mechanics of continuous media.

It is clear that the quantization *“a la Schrédinger™ can also be treated as such a
kind of interpretation problem. In this context the Hamilton—Jacobi equations of
classical mechanics considered as Q-characteristic equations are to be completed
by suitable complementary equations. It is natural to think that the standard for-
mal quantization methods “a la Heisenberg” cover just the remaining gap of these
hypothetical complementary equations.

17.4 Alternative singularities via the homogenization trick

The classical, i.e. FOLD-characteristic equation for the Schrédinger equation,

in¥

at+ﬁ—Az// Vy=0, (29)

and for singular locuses given in the form t=x,=¢(x,, x,, X3), is

2 2 2
<M> +<ﬂ) +(ﬂ) _0.
X, 0x5 0x5

This demonstrates that geometric singularities are not adequate for the corre-
spondence between quantum and classical mechanics. For the hypothetical
“quantum” singularity type (see section 3) the Q-characteristic equation %
should be

dp 1 6(/’)
2 () -r=0. (0)
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It is possible, however, to interpret (30) as the classical characteristic equation
for the “homogenized” Schridinger equation,
oy 1 %y 2"

dt ds 2m,z,6x, V6—=0 (31)

in five-space (x,, X», X3, £, §) assuming that singular locuses are given in the form
s—o(x,, X2, X3, t) =0. On the other hand, (31) reduces to (29) on the functions
g=0(x,t) exp((i/h)s) . (32)

This motivates us to define Q-singularities as the reduction of FOLD singularities
on the functions (32). This is not, however, very straightforward and we refer
the reader to Ref. [24] for some results of this approach.

17.5. Ryy-characteristic equations

In this subsection some analogs of the Hamilton-Jacobi equation for extended
(i.e. not point-like ) singular locuses are exhibited. For simplicity we have chosen
the wave equation

3 u 1 &
igl ax ?

:

2 =0

D

as basic. Since R¢;,=FOLD the R,,-characteristic equation coincides with the
standard eikonal equation (28).
For k=2 and the singularity locuses given by

X =¢(s,1), x3=y(s,1), withs=x,

the R,,-characteristic equation looks as

2 2 2 2 2
(_aza_«o_a_so@z (30 (Y a(30) (v .,
ot ds Ot Os ot ot ds ds o
Its solutions are two-dimensional surfaces tangent to the light cone.

Finally, the R;,-characteristic equation for singularity curves of the form
x=x;(t),i=1,2,3,is

x3+x3+x3=c2.

For other examples, results and discussions see Ref. [24].
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