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Abstract

Diffieties areanaloguesof algebraicvarietiesfor partialdifferentialequations.Theyare
akind of (generally,infinite-dimensional)manifolds suppliedwith an infinite-ordercon-
tact structure.Secondary,or more speculatively,“quantized” calculusarisesasa sort of
differential calculusover filteredsmoothfunction algebrason diffieties that respectsthe
contactstructure.This paper,written as an informal introduction andinvitation to Sec-
ondaryCalculus,is an accountof theauthor’sattempt to understandwhat shouldbe the
analogueof theSchrodingerequationfor quantumfield theory. So, moreattentionis paid
to motivationsthanto exactconstructionsandformulas.
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0. Introduction

But scienceis not yet just acatalogueof
ascertainedfactsabouttheuniverse;it is
amodeof progress,sometimestortuous,
sometimesuncertain.Andour interestin
scienceisnot merelyadesireto hearthe
latest facts addedto the collection, we
like to discussourhopesandfears,prob-
abilitiesandexpectations.

Sir A. Eddington

The pre-historyof rational mechanicswas the studyof the so-calledsimple
mechanisms.A numberof attemptsto explainthe wholeNatureas a machine
composedofthesemechanismswasmadein thatperiod.The“standardschemes”
and“models” of the modernquantumfield theory (QFT) look very muchlike
thesesimplemechanisms.

This analogy,maybe,makesclear the reasonsof the almostcommonfeeling
thatquantumfield theory in its presentform is not yeta “true” well-established
theory.Belowwe.undertakean attemptto analysewhy thisis soandwhat ingre-
dientsareto beaddedto the solutionto get the desiredcrystallization.

Havingthisin mindwe startthepaperwith somegeneralobservationson the
genesisof long-scaletheories.Theseintroductivepagesfurnish our subsequent
considerationswith the necessaryinitial impulse.Following it we eventuallyar-
rive atSecondaryor, morespeculatively,QuantizedDifferentialCalculus,which
seemsto havesomechancesto providethe passagefrom “standardmodels”to
the “true” theorywith the necessarymathematicalbackground.

We wouldlike to stressfrom theverybeginningthatSecondaryCalculusis only
alanguageon which, wehope,QFTcanbedevelopedsmoothly,i.e. without“re-
normalizations”,“anomalies”,etc. If it is so,the fundamentalproblemto trans-
lateQFTsystematicallyinto SecondaryCalculusremainsto becarriedout sepa-
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rately.Ofcourse,resultsandexperiencesaccumulatedup to nowin the studyof
concretemodelsareindispensableto this purpose.

This paperisneitherareviewnora researchaccountbut along motivationfor
thisSecondaryCalculus.We describeinformally someprincipal ideasandresults
alreadyobtainedin this field andalsoindicatesomeproblemsandperspectives
whichseempromisingatthismoment.

It wasnot ourintentionto presenthereasystematicandrigorousexpositionof
SecondaryCalculus.Thatwouldbehardlypossiblewithin thelimits of one,even
long,paper.So,werestrictourselvesto ageneralpanoramawhichcouldhelpthe
interestedreaderto enterthe subjectby consultingthe attachedbibliography.
Detailsand techniquescompletingthis text canbe found in Refs. [51,53,491,
which we suggestto read first. They should be followed by Refs. [1,17,50,
38,54,40,41,15,16,52,281.

And, finally, the first “philosophical” pagesof this paperareto be readsemi-
seriouslykeepingan eyeonthe uncertaintyprinciple:a superfluousmakingmore
precisethe meaningof words usedtherewill kill the motivating impulsesthe
authorhopestheyemit.

1. Fromsymmetriesto conceptions

It is banalto saythateverytheory hasits origin in rathersimplethings.But
what are they? The word “simple” of commonlanguageincorporatesmany
meanings.In linearapproximationtheycan bedisplayedby the followingdiagram:

BANAL F—H H’ H ~ SYMMETRIH

in which the dots indicatethe “intermediatestates”.In otherwords, we find
enoughreasonsto interpret“symmetric” as “simple but not banal”. Detailsare
justobstructionsto symmetry.So, themodelsmanifestingonly theessenceof the
phenomenain questionare necessarilysymmetric. Recall euclideangeometry,
Copernicus’planetarysystem,Newton’slaws in mechanicsor specialrelativity
to illustratethis idea.Hence,we acceptas the leadingprinciple that the initial
stagein thegenesisof theoriesis the studyof symmetricmodels.(Of course,the
aboveremarksareapplicableonly to ratherlong-scalesituations.)

Symmetryconsiderationsreplacequite well the conceptualthinking in study-
ing symmetricmodels.This is why theywork well atfirst, especiallyfor mathe-
maticallybasedtheories,owing to the factthat “symmetry” implies“solvability”
and“integrability” in thiscase.

At this point the theorypassesto the nextstagein its developmentwhenthe
dominatingparadigmstatesthat everythingcanbe composedof simple (sym-
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metric) elementsstudiedearlier andthe only thing to be understoodis how.
Schematically,thisperiod can be characterizedasthe timewhenoperativecon-
ceptionsof the future “true” theory,not yet discovered,aresubstitutedfor their
“morphemes”andwhenmoreor lessmechanicalmosaicsof thelatterreplacethe
calculusof theseconceptions.This is thereasonto call thisstage“morphological”.

A seriousdeficiencyof thesemorphologicalcompositionsis thatmanyofthem
areto becorrectedconstantlyto bein agreementwith newexperimentaldataand
theoreticaldemands.Thisproducesnumerousperturbation-likeschemeswhich
areverycharacteristicof themorphologicalera.

Ptolemy’splanetarysystemwith its numerousepi- andhypo-cyclesandquan-
tum electrodynamicswith its renormalizationsillustratethisquitewell. Also,one
canlearnfrom theseexamplesthattheincredibly exactcorrespondenceto exper-
imentsis not all that is neededto bea“true” theory.Ofcourse,it is nothingbad
to useaperturbationschemefor technicalpurposes.But it wouldbehardly rea-
sonableto erectaskyscraperon aperturbativefoundation.

Afterwardstheoriesentertheir “troubledtimes”, or, whichisbetterto say,the
stageof conceptualself-organization.Surely, this is the longest,mysteriousand
evendramaticperiod in the birth processof a new theory. At that time some
hiddenselectionmechanismsactingin the relevantscientific communitydraw
out, stepby step,thenecessarynewconceptionsandoneday it appearsthat they
constitutethatuniquelanguagein whichthe lawsof the scopeof the phenomena
in questioncanbe expressedquite adequatelyand,therefore,elegantly.This the
justthe birthdayof anewtheory.

Darwin’s selectiontheory seemsto be applicableto this selectionof concep-
tionsaswell. For example,onecanseemanyfantasticcreationsappearingduring
troubledtimes (for example,look at the history of QFT 23 yearsback).This is
typical for situationswhenthe expressivepowersof the languagedo not corre-
spondto the subjectto bedescribed.

Summingup we representouridea concerningthe genesisof mathematically
basedtheoriesby thescheme

symmetricorigin morphological
(“beautiful times”) era

conceptualself-organization conceptual 1
(“troubledtimes”) happyend

Ofcourse,in reality,the indicatedperiodsgetmixed andthiscanhappen,some-
times,in a verycuriousway. Forexample,nowadayssyntheticgeometries,typi-
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calcreationsof themorphologicalera,havealmostleft theland,beingsubstituted
by differentialgeometry.On the otherhand,measuretheory,beinga morphol-
ogical realizationof the idea of integration,coexistspeacefullywith its future
conqueror,namely,the de Rham-likecohomologies.

Thepassagefrom attemptsto modelthe scopeof newphenomenain termsof
the“old”, alreadyexistingmathematicallanguageto anew oneof a higher level,
whoseexpressivepotentialsarejust adequateto the newdemands,is the essence
of scheme(1). Herewe use“mathematicallanguage”in the spirit of “program
language”.Thisenablesusto takeinto accountanthropomorphicelementspres-
ent implicitly in thetheoriesdueto thefact that individual brainsandscientific
communitiesaresomethinglike computersandcomputernetworks,respectively.
The history of metric geometryfrom its Hellenistic symmetricform basedon
commonlogic up to its modernRiemannianform basedon Calculusgivesan
idealillustrationof the abovescheme.

2. “Troubled times”of quantumfield theory

Assumingscheme(1) to be true its becomesquite clearthatnowadaysQFT
passesthroughits “troubledtimes”. Evensomekey wordsof QFT’s currentvo-
cabulary, such as “renormalizations”, “broken symmetries”, “anomalies”,
“ghosts”etc., indicatea deepdiscrepancyof its physicalcontentandthe mathe-
maticalequipmentused.Also, onecanseetoo manyLie groups,algebras,etc. up
to quantumandquasi-quantumones,andsymmetryconsiderationsbasedon
them,whichplayafundamentalrole in thestructureof modernQFT.Thisshows
thatthe theoryis not far enoughfrom its symmetricorigin. In fact, the strongest
andmostobviousargumentin favor of these“troubled times” comesfrom the
perturbationtypestructureof theexistingtheory.However,the absenceof real
alternativesandlong-timehabitshavereducedthevalueof thisargumentalmost
to zero.

The authorrealizesthat the scepticreader,evenconvincedof these“troubled
times”, will preferto follow thecurrentresearchactivity in expectationof times
whenthe aforementionednaturalselectionmechanismswill haveaccomplished
their work. So, this paperis mainly dedicatedto thosewho would be interested
to seeksomepossibleartificial selectionmechanisms,which, as is well known,
workmuchfaster.

At this pointwe passto look for this “programlanguage”for QFT, beingmo-
tivatedby the above“evolution theory”.Ofcourse,thelatter shouldbeexposed
with moredetailsto beperceivedcorrectly.But wedo nottakethe riskto go more
in thisdirection,rememberingthe attitudetowardanyphilosophyatthe endof
the“point theoretic”epochweareliving in. Insteadweinvite thereaderto return
to thispoint onceagainafterhavingreadthe wholepaper.Also, a development
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of theabovegeneralideascanbefoundin Ref. [1], ch. 1. In particular,therewe
touchsuchtopicsaswhichanthropomorphicfactorstandsbehindthe ideato put
set theory in the foundationsof the wholemathematicsandwhy, properly,Cal-
culusis thelanguageof classicalphysics.

3. “Linguization” of the Bohr correspondenceprinciple

We find the initial datain thefollowing two generalpostulates,which seemto
bebeyonddoubt:

I. Calculusis thelanguageof classicalphysics.
II. Classicalmechanicsis thelimit casewith h—~Oof quantummechanics(“the

Bohr correspondenceprinciple”).
Theseareourinitial positionandmomentum,respectively.

To avoidmisunderstandingwewould like to stressthatthe word“Calculus” is
usedhere,andlater on, in its direct sense,i.e. as a systemof conceptions(say,
vectorfields, differentialforms, differentialoperators,jets, de Rham’s,Spencer’s,

cohomologies,etc., governedby general rules, or formulas like d2=0,
L~j~~od+doj~,etc.).As we haveshownin Ref. [42], theyall constitutea sort
of “logic algebra”dueto the fact thatdifferentialcalculuscan be, in fact,devel-
opedin apurelyalgebraicway overanarbitrary(super-)commutativealgebraA
(seealsoRef. [17], ch. 1). This algebraicallyconstructedCalculuscoincideswith
the standardonefor smoothfunctionalgebrasA= C~(M). Also, onecanlearn
from thisalgebraicapproach,andthis is very importantto emphasize,thatthere
aremanythings to discoverandto perceivein orderto closethis logic algebra,
i.e. to get the whole Calculus.Higher-orderanalogsof the de Rhamcomplexes
[48] givesuchakind of example.

Thus,the first postulatesuggeststo look for an extensionof Calculuswhile the
secondonedefinesmorepreciselythe direction to aim at. Having this in mind
we needto extractthe mathematicalessenceof Bohr’scorrespondenceprinciple
andthe following diagramillustrateshowit can bedone:

equationsof quantum h ~ equationsof classical
mechanics ~— — -- mechanics

(Schrodinger’sequations) quantization (Hamilton’s equations)

~ “mathematization”

partialdifferential charQ ordinarydifferential
equations equations
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HereCHAR1 denotesthe mapwhich assignsto a givensystemof partial differ-
entialequations(p.d.e.)ql’ asystem~4’~-or ordinaryequationsdescribinghowE-
typesingularitiesof solutionsof ~ propagate.Whatis meantby solution singu-
larity typesI andwhat is, in particular,the abovesingularity typeQ will be dis-
cussedlateron, see alsoRefs. [43,52,26,28]. But now we will explainwhatare
the reasonsfor suspectingCHARQ to be behind the Bohr correspondence
principle.

First,notethatthe mathematicalbackgroundof the passagefrom waveto geo-
metricalopticscan benaturallypresentedin the form ?Y —, ~~OLD, whereFOLD
standsfor the folding typesingularityof multivaluedsolutionsof ~‘ (seesection
16). On the otherhand,multivaluednessof solutionsis relatedto non-unique-
nessof theCauchyproblemand,therefore,to thetheoryof (bi-)characteristics.

Remark.Thereexistsa dualway to passto geometricalopticsproposedby Lune-
burg [25] andbasedon thestudyof discontinuoussolutions.However,thechoice
of Luneburg’sapproachinsteadof that we haveadopteddoesnot leadus to es-
sentialchangesin oursubsequentarguments.

Second,rememberingthatSchrodingerdiscoveredhis famousequationspro-
ceedingfrom theanalogywith wave-geometricoptics, onecanexpecta similar
mechanismin thepassagefrom quantumto classicalmechanics[36]. Morepre-
cisely, it seemsnaturalto hypothesizethe equationsof classicalmechanicsto be
the Q-characteristicequationsof the correspondingequationsof quantumme-
chanics.ThesehypotheticalQ-characteristicequationsshouldplaya similar role
with respectto an appropriate“quantum” solutionsingularity type as the stan-
dard characteristicequationsdo with respectto the singularCauchyproblem.
Thishypothesisbecomesalmostevidentin the frameworkof Maslov’sapproach
to quasi-classicalasymptotics[30]. We referalsoto the lecturesby Levi-Cività
[20] andthework by Racah[35], oneof thefirst attemptsto go thisway.

This all motivatesusto takethe formula

QUANTIZATION = CHAR~’ (2)

as theleadingprinciple andwe goto seekits consequences.
First of all, the direct attemptto extend (2) to QFT leadsimmediatelyto the

problemillustratedby thefollowing diagram:

quantumfields h-.o classicalfields

~ “mathematization”~ (3)

9 CHARQ partial differential
equation
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In otherwords,wehaveto answerthe question:what kind of mathematicalob-
jectsareto beplacedinto the left lower rectangleof (3) or, moreprecisely,what
is the mathematicalnatureof the equationswhosesolution singularitypropaga-
tion is describedby meansof partial differentialequations?Thescheme

ordinarydifferential ci~i,~ partialdifferential ~i:i~h ?
equations equations

motivatesus to call these,yet unknown,mathematicalobjectssecondaryquan-
tizeddifferentialequations.

Thus,the problemto considernextis

Whataresecondaryquantizeddifferentialequations? (4)

All theprecedingdiscoursesdo not furnish uswith the necessaryimpulseto at-
tack it. In searchingsuch an impulsewe considerthe simplestsituationwhena
CHAR-typemappingappears:

~ a,(x) ~- =b1(x) CHAR {x,• =a,(x)}.

In otherwords,wewill examinethe passagefrom vectorfields to ordinarydiffer-
ential equationsmaking an attemptat understandingwhat secondary(“quan-
tized”) vectorfieldsshouldbe.

We canprofit from the simplicity of this situationthat comesfrom the sym-
metryof the contextin full accordancewith section1. Moreexactly,infinitesimal
symmetriesof the systemx~=a1(x)arevectorfields Y= >c1(x) ~i/0x1commuting
with the field X=>~a,(x)8/i3x, and, as is well known, any vector field admits
locally a plot of fields commutingwith it. For our purposesit is importantto
observethat symmetriesof the systemx1=a1(x) areobjectsof thesamenatureas
thedifferentialoperator(namely,X= >~a,(x)O/0x1) definingthe first-orderpart
of the initial equationX(u) = b. For thisreasonit seemsvery likely thatsecond-
ary quantizedvector fields are identical to symmetriesof partial differential
equations.So, proceedingto checkthis hypothesiswe haveto answerthe ques-
tion in thefollowing title.

4. Whataresymmetriesof partial differentialequationsandwhat arepartial
differentialequationsthemselves?

It is not to soeasyto answerconceptuallyboththesequestions.To seewhy this
is so let usconsidera partialdifferentialequation,say,

F(x, U, ~ ...~ u(k))=O , (5)
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wherex=(x1, ..., xj, u=(u’, ..., u
tm) andU(/) standsfor the totality of all lth

orderderivativesof the dependentvariablesu with respectto the independent
onesx, andaskwhatthe symmetriesof (5) are. If onetreats(5) to bea relation
betweentwo differentgroupsof variables,dependentandindependentones,then
it comesnaturally to definea symmetryof (5) to be a transformationof the
dependentvariablesand, separately,of the independentoneswhich preserves
thisrelation. More exactly,it is proposedto call symmetriesof (5) transforma-
tions of the form

(x,u) i—* (~(x),ü(u)) (6)

which, beingextendedcanonicallyto derivatives,preserve(5).
This historically first approachwasfollowed by the following two onesenlarg-

ing thegroupof transformations(6), first, to

(x,u) i-+ (X(x),ü(x,u))

andthento

(x, u) i—p (~(x, u), u(x, u))

Unfortunately,all thesedefinitionsarebasedon an “ad hoc” choiceof trans-
formationsto be takenas symmetries.So, going thisway onecanneverbe sure
thatanew“Ansatz”, like (6) or (7), is the “true” final definition.For example,
thetransformations(7) were,historically, followed by the famouscontacttrans-
formationsof Lie. Namely,he proposedto consideras symmetriesof (5) trans-
formationsofthe form

(x, u, u~)i—p (.~, u, u~)

where~ u, uj, ll=ü(x, u, ui), u~=u~(x,u, us), which preserve(5) to-
getherwith the equationdu— ~ dx

1=0.
But whycannotsomebodyfind somethingelse?Lie himselfhadnot answered

thisquestion.Butheunderstooddeeplythatanexpressionof theform (5) is not
a sovereignobjectto betransformeddirectly but only a label of it. In particular,
hisdiscoveryof contacttransformationswasbasedon ageometricinterpretation
ofwhat standsbehindlabelsofthe formf(x, u, u~)=0 (for adiscussionseeRef.
[51]).

In general,it is clearthat symmetriesof amathematicalobject areto be its
invertible morphisms(“transformations”) into itself. So, onecanseefrom the
abovediscussionthatthe observeddifficulties to define symmetriesof p.d.e.’s
comefrom thefact that reallywedo not knowwhat,properly,partial differential
equationsare.

The last questionis, in fact, neitherto absurdnorso innocentas it mayappear
atfirst glance.On the contrary,havingansweredit wewill gainmuchmorethan
thetrue conceptof symmetryfor p.d.e.’s.



AM. Vinogradov/Journalof GeometryandPhysics14(1994)146—194 155

In whatfollows weallow ourselves,sometimes,to call labelswhat is commonly
calledpartial differentialequations,i.e. expressionsof the form (5). This is to
underlinethe differencebetweenthe commonandthe conceptualuseof these
lastwords.

Nowwe passto thenecessarypreliminaries.

5. Jets

Note thatlabelsof differentialequationsare“algebraic”relationsbetweenin-
dependentvariablesandderivativesof the latter up to aprescribedorder. So,
eachlabeldefinesasubmanifold,oneofthepossiblelocalchartsofwhichis formed
by all thesevariablesandderivatives.Thesemanifoldsarecalled jet spaces(or
manifolds)andwe are interestedin them to reinterpretlabelsin an invariant
coordinate-freeform. Belowthe necessarydefinitionsandelementaryfactson
jets arecollected.

Let us fix an (n+ m)-dimensionalmanifoldE, rn? 0, andanon-negativeinte-
gern. This isto emphasizeourintentionto considern-dimensionalsubmanifolds
of E. If L, L’ aretwo of themandaeLnL’ we saythattheyhavethe samekth
orderjet atacE if theyaretangentto eachotherup to orderkata. So,k-jets are
equivalenceclassesof n-dimensionalsubmanifoldsof E with respectto the rela-
tion “be k-tangent”.We denoteby [L]~ the kth orderjet of the n-dimensional
submanifoldL Eat aeL.Thetotality of kth orderjetsof all possiblen-dimen-
sionalsubmanifoldsL ~ Eat all pointsacE is denotedby Jk(E, n). Being sup-
plied with a naturalstructureof smoothmanifold, thisis calledthe kth orderjet
spaceof n-dimensionalsubmanifoldsof E.

Remark. If E hasa fibred structure,say, r:E—~M,dim M=n, thenonecancon-
sidera specialclassof n-dimensionalsubmanifoldsof E that aregraphsof local
sectionsof m. The kth orderjets of thesegraphsconstitutean openandevery-
wheredensesubsetofJk(E,n),called thekth orderjet spaceof sectionsof rand
denotedbyJ~cJ”~(E,n).

Example 1 (k=0). Evidently,everytwo n-dimensionalsubmanifoldsof Epassing
through a point acEaretangentto eachotherwith orderzeroata. Therefore,
thereexistsonly one0-jet ata andonecanidentifyJ°(E,n) with E.

Example2 (k= 1). Two n-dimensionalsubmanifoldsofE aretangentto eachother
with orderoneatthe point a iff theyhavethe sametangentspaceat a. So, first-
orderjets at aEE canbe identified with n-dimensionallinear subspacesof the
tangentspaceTaEof Eata.
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We stressherethat all abovedefinitionsarealsovalid for k= co. In particular,
J~(E,n) is well definedas a set.However, it requiressomecareto imposea
smoothstructureon it. This will bedonebelow.

Naturalmaps

akl:J(E,n)—J(E,n), [L]~-~ [L]~

with co?k? 1? 0unite togetherjet spacesof differentorder into afamily. In par-
ticular, theyform the sequence

E=J°(E,n) ‘~-~— J’ (E, n) ~±~_ c~k.k! Jk(E n) (~I~< , (8)

the inverselimit of whichcoincideswith J~(E,n).

ForagivenL c E, dim L = n, we havethemap
jk(L):L—*J(E,n) , Lna~-~[L]~eJk(E,n)

A functionç~on J”~(E,n) is saidto besrnooth iffc9ojk(L)eC~(L)for everyn-
dimensionalL ~ E. We definein thisway thesmoothfunctionalgebraon j’< (E, n)
and,therefore,a smoothmanifold structureon it. We remarkthatthisdefinition
worksas well for k=co.

It follows directly from the definitionsthatjk(L) is a smoothmap,and

L(k) :=imlk(L) ~Jk(E, n)

is an n-dimensionalsmoothsubmanifoldof Jk(E, n). Also theidentities

j/(L)=ak,ojk(L) , k>~l,

showthat~ is asmoothsurjectionand

a~1:C°°(J’(E,n))—~C~(J’~(E,n))

is an imbedding.Thedirect limit of the following sequenceof monomorphisms:

C~(E) ~“° ‘ C~(J
1(E, n)) a2,i , ak,k_, C~(Jk(E,n)) a~+Ik

coincides,evidently,with the smoothfunctionalgebraofJ~(E, n).We adoptthe
standardnotationC~(J~(E,n)) for it.

It is convenientto shortentheselongnotationsas follows:

~=~3~(E,n):=C~(Jk(E,n)), 0’~k<co,

Weget thefiltration

of thealgebra.f by identifying ~ with its imagein ~Funderthe monomorphism
a~

0.The differentialcalculusoverthe filtered algebra~={~} givesthe neces-
sary rigorousfoundationsfor all our subsequentconstructions(seeRef. [17]).
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In particular,it enablesus to handleJ°”(E, n) in manyaspectsas ausualfinite-
dimensionalsmoothmanifold.

A local charton E is calleddivided if the coordinatefunctionsforming it are
divided into two partsconsistingof n andrn functions,respectively.Thefirst of
them,sayx1, ..., x~,arecalled“independent” andthesecondones,sayu’, ..., um,

“dependent” variables.
A divided charton E generatesalocal charton jk (E, n), 0 ~ k~ co, whichcon-

sistsof the functions

~ Ial~k,

whereastandsfor a multi-index, say a=(i1, ~2, ~ ia), and al=i1+~~+i,,.The
functionu~,is definedby the condition

0IaIf I

U~0Jk(L) ~ ~ , VLcE,dimL=n,
ijX1 uX,,

where

u’=f’(x1, ..., x~), i=l, ..., m , (9)

arelocal equationsof L. Andnow weseethatthejet manifoldsJk(E,n) (orJ~)
areexactlythoseoneswhich naturallycarrycoordinatesystemscomposedof in-
dependentvariablestogetherwith their derivatives.

A standardlabelof a systemof partialdifferentialequationslooksas

1~(x,u,...,u’,...)=0, j=l,...,l, (10)

wherex= (x1, ..., xv), u = (u
1, ..., Urn). It is natural to interpret (10) as local

equationsof a submanifold ~ J”(E, n) for a suitable E. For instance,
u

1=u,~+uu~definesthe hypersurface

U(2,o) +UU( 1,0) —U(o,l) 0

inJ
3(1R3,2) whereR3={(x, t, u)} andx

1 =x, x2=t, u’ =u is the divided coordi-
natesystemin it.

This motivatesthefollowingcoordinate-freeversionof the standarddefinition
of partialdifferentialequations.

Definition. A submanifold ~ ~ Jk(E, n) is called a label ofa systemofpartial
differentialequationsimposedon n-dimensionalsubmanifoldsof the givenman-
ifold E.

Let a submanifoldL E be given by (9). Thenthe functionsf’(x), i= 1,
rn, satisfythesystem(10) iffL(k) ?!J. So,the manifoldL(k) can betakenasthe
coordinate-freeversionof the notionof solution.

We remarkthatJkmcanreplaceJk(E,n) in all thepreviousdiscussions.
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6. Higher-order contact structures

Jetspacespossessby birthanaturalgeometricalstructure,namely,the so-called
kth ordercontactstructure,or theCartan distribution.Thismeansthatalinear
subspace,say C0, of the tangentspaceT0Jk(E, n) is assignedto each point
0cJ’~(E,n).

The subspaceC0 can be definedas follows. First, introducesomespecialn-
dimensionalsubspacesof T0J”~(E,n), calledR-planes.By definitionan R-plane
at ecJk(E, n) isa subspaceoftheform TOL(k) supposingthat0= [L]~. We stress
herethatnot everyn-dimensionalsubspaceof T0Jk (E, n) is anR-planeandmore
thanoneR-planepassthrough0 if k< co andrnn>0. Second,put

C0= {the linearenvelopeofall R-planesatO}.

A simplecomputationshowsthat

dimJk(E,n)=dimToJk(E,n)=m(n~)+n, 0~k<co

and

dimCo=rn(~~_l)+n, 0~k<co.

In particular, dim C0—*oo with k—boo.

Example. (classical contact structure). Consider the manifold J’(P~
1,n). In

thiscasem=k= 1, dim Jl(pn±l n) =2n+ 1, dim C
0=2n, i.e., C0isahyper-plane

i~T0J’ (pfl+~, n). Dividing standardcartesiancoordinates(x1, ..., x,,±1)in P’

as x= (x1, ..., x~),u= x~,+1weget the local coordinates (x1, ..., x,,, u, Pi, ..., p,~) in
J’ (P +1, n),wherep, = u,,.In thesecoordinatesC0is given by the equation

du— ~p, dx1=O,

in whichonecanrecognizetheclassical(= first-order)contactstructureof Lie.
In the generalcaseC0 is givenby thesystem

du’—~u~~1dx1=0,l~i~rn, 0~lal<k, (11)

wherea+ l~standsfor multi-index (i1, ...~ i~+1, ..., i,,) supposingthata= (i1,
i~,..., ia).

The commonfeatureof all kth-ordercontactstructures,0<k’<co, is that they
all are, in a sense,“completelynon-integrable”distributions.In contrast,the in-
finite-ordercontactstructureon J°°(E,n) is completelyintegrable.This is easily
seenfrom the fact that the Pfaff system(11) satisfiesthe Frobeniuscomplete
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integrabilityconditionsif k= co. Moreover,the Cartandistributionon infinite-
orderjet spacesis finite dimensionalin spite of its beingthe inverselimit of the
Cartandistributionson finite-orderjet spaceswhosedimensiongrowsinfinitely
with theorderof jets.In fact, thedimensionof thisdistributionis equalto n, i.e.,
dim C0=n for OcJ°°(E,n).Thismeansthatthereexistsonly oneR-planefor any
OcJ~(E,n), which coincidesautomaticallywith C0.

All theseremarksareto stressthat infinite-orderjet spacesdiffer from finite-
orderonesnot only in that theyareinfinite dimensional.It looksparadoxicalbut
theformeraresimplerobjectsthanthelatterwith regardto thepropertiesof basic
structurestheycarry naturally.

7. Differentialequationsarediffieties

Now usinginfinite jet spaceswecananswerthequestion:whataredifferential
equations?

Let
(12)

i~JUa

bethe so-calledtotalderivativeoperatorwith respectto x. Thenthesystem

F1=0, D,F~=0, l.~<j~<l, l~i~n, (13)

definesthe first extensionof (10). Evidently, the system(13) is equivalentto
(10) in the sensethatbothhavethe samesetof solutions.The system(13), in
fact, is alocalcoordinatedescriptionof anewlabelq~t~ jk±1 (E, n),whichcan
be defined,purely geometrically,in termsof the contactstructureon j”~(E, n)
only. More generally,one candefine the sth extension~1~s) J(E n) of the
label q~’ Jk(E n) by meansof the system

D,71~,=0,..., lal~s, (14)

with D~=D’~’~•“oD~’ wherea= (i1, ...~ ia). In this definitionscanbetakenequal
to infinity. In thiscasewewrite ~, insteadof ~ Clearly, ~ ~ J°°(E,n). It is
not difficult to seethat

ak+sk±!(~d,/(s)) ~

for everys?t. In particular,wehavethe following sequence
ak-4-I,k ak±2k÷1 ak±~+i,k+s

~~O) ‘ ~‘(J)’ ~~s) ‘

the inverselimit of which coincideswith ~.

We definethe smoothfunctionalgebra ~ ( ~ç~) on to be the restrictionof
the smoothfunctionalgebraof J~’(E,n) on:
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.~(~):=5(E,n)l~.

Thisalgebrais filtered naturallyby its subalgebras~(9~’j, s=0, 1,2, ..., where
~( &~)is thepull-backofthealgebraC~( ~~)) via the mapct~k±S.~ ~(s),

This enablesus to developthe necessarypithy differential calculusover 9~ç,
understood as the calculus over the filtered commutative algebra
~~={9~(9~)} (seeRef. [17]).

Also, ~, inherits the infinite-ordercontactstructurefrom the ambientspace
J~’(E,n). More exactly, if 9~’is a formally integrablesystemand0e9~,,then
C0 c T0( 9~).Thus,9~is suppliedcanonicallywith a “contactstructure”which
is an n-dimensionaldistributionon it satisfyingthe Frobeniuscompleteintegra-
bility conditions.Manifolds of the form 9~consideredtogetherwith the contact
structuredescribedabovearelocal formsof the objectswhichwe call diffieties:

Definition. A manifold (9suppliedwith an n-dimensionaldistributionis calleda
difJietyif it is locallyof the form 9~.

The numbern is called the dijjiety dimensionof (9 andis denotedby Dim C.
Ofcourse,it differs, generally,from theusualdimensionof (9, which is equalto
infinity as arule.

Now wetakeas theleadingprinciple that,conceptually,

systemsofpartialdifferentialequationsarediffieties.

In particular,9?’~.is the objectwhich standsbehindthe label 9?! Jk(E, n) [or
behind(10)].

It wouldbetoo naiveto try to changethelong-timeestablishedterminologyby
usingthewords“differentialequations”in their new meaning,i.e. as a synonym
of “diffiety”. For this reasonwe retaintheir traditionalmeaning,remembering,
however,thatthisis simply referringto a label.So, thesewordsare to be substi-
tuted by “diffiety” whentreatinga conceptualproblem.For example,the ques-
tion: whatarethesymmetriesof partialdifferentialequations,isto beformulated
as

whatareautornorphismsofdiffieties?

A little laterwe will seethatthereis no problemto answerit. But beforethatwe
mustaddsomedetailsinto our picture.

First of all, we remarkthat startingfrom (10) onecan producemany new la-
bels, say, transformingdependentand independentvariablesor passingto the
correspondingfirst-order system or extending it, etc. If 9?! Jk(E n) and
9?!’ ~ jk’ (E’, n) aretwo labelsrelatedto oneanotherin this way, then9?!,,~=
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This demonstratesclearly that 9?! and 9?!’ areactually different “labels” of the
samething.

Now we haveto interpretin termsof diffieties what aresolutionsof “partial
differentialequations”.Theconceptof integralsubmanifoldof adiffiety givesus
the answer.Moreexactly, let (9 be adiffiety andDim (9=n, i.e., dim C0=n for
everyOn (9 whereOi— C0~ T0(9 is the distributionwith which (9 is suppliedby
definition. A submanifoldWc (9 is called integral if T0W=C0 for everyOn W
(seeFig. 1). Evidently,dim W=n. It canbeprobedthat every integralsubman-
ifold of the diffiety (9= ~ is locally of the form L(,~)whereL ~ E is a solution
of 9?! in theusualsenseof thisword, i.e., thelocal equations(9) ofL satisfy (10),
by which 9?! is given locally (seeRef. [17]). This justifiesour interpretationof
solutionsasintegralsubmanifolds.

Whatwas saidbeforeenablesusto considerinformally a diffiety as a shelfon
whicharestoredall solutionsof the correspondingdifferentialequation.Also, it
leadsto an importantgeneralizationof the notion of solution for arbitrarynon-
linear systems of partial differential equations (see Refs.
[43,17,26,27,49,52,28,55]).We will discussit below in connectionwith the
quantizationproblem.

The following typesof diffieties areof importancefor us. Let N be a foliated
manifoldwith n-dimensionalleaves.For anyOnN wedefineC0 to bethetangent
spaceto theleafpassingthrough0. ThemanifoldNequippedwith the n-dimen-
sionaldistribution0 i— C0 is a diffiety. In fact, N= 9?ç. where9?! is the systemof
partial differentialequationscomposedof the Frobeniuscompleteintegrability
conditionsfor the distribution {C0}. Thus,foliatedmanifoldsarediffieties. The
diffiety dimensionof sucha diffiety is equalto thedimensionof its leaves.

Also, everyn-dimensionalmanifold, sayM, canbe regardeda foliatedmani-
fold consistingof only oneleaf (in this caseC0=T0M) and, therefore,as adif-
fiety. Evidently, in thiscaseDimM= dim M.

Remark. Therearetwo differentnaturalwaysto treatfinite-dimensionalmani-

Fig. 1.
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folds as diffieties. Oneof them waspresentedjust above.We get the secondone
by supplyingM with the zero-dimensionaldistribution 0 i—p C0={0} T0M. In
thiscaseDim M=0. Thesetwo waysare,in asense,dualto eachother,andthere-
fore, leadto a kind of duality in the theoryof differentialequations.Also, one
can see that the traditional “differential” mathematics(Calculus,geometry,
equations,etc.) viewedas a part of diffiety theorybecomesconceptuallyclosed
onlyif theunderlyingmanifoldsareunderstoodto bezero-dimensionaldiffieties.
In otherwords,the standard“differential” mathematicsforms the zero-dimen-
sionalpartof diffiety theory.So,from thispointof view it wouldbequitenatural
to suspectthattherelevantmathematicsnecessaryto quantizesmoothlyclassical
fieldshasnot yetbeendiscoveredto agreatextent.

8. What are symmetriesof partial differential equations?

As we havealreadynotedone can immediatelyanswerthis questionby re-
placingthewords“differentialequations”in it with “diffieties”.

Rememberingthatdiffieties aremanifoldsequippedwith ageometricalstruc-
ture (the Cartandistribution) we see that their symmetriesare to be diffeo-
morphismswhich preservethisstructure.Moreexactlywehave:

Definition. A map P: (9-+ (9 is calledasymmetryof the diffiety (Oif
(i) ~JJis adiffeomorphism,
(ii) dob(Co)=C~~(0).

HereC0 denotes,as before,the contact“plane” at 0 andd0b: T0(9—~T,1(o) (9 de-
notesthe differentialof ~Pat 0.

Specializingthisdefinitionto the case(9= 9?!~weget the definition of symme-
try for aconcretesystemof partialdifferentialequationsgivenby its label 9?!, i.e.
by (10).

Of course,symmetriesof diffieties should constitutea specialclassof their
morphisms.Thesemorphismsarecalledsmapsandtheirdefinition isas follows.

Definition. A map (I): (9k— (92 of adiffiety (9~into adiffiety (92 is calleda smapif
(i) Cl’ is smooth,i.e.,fo l’nC~((9k) for everyfnC°°(~2),

(ii) d0cl’(C0) ~ foreveryOn &~.

It canbeshownthatsmapscanbeidentifiedlocallywith differentialoperators,
generallynon-linear.Smapsareanalogsof smoothmapsof finite-dimensional
manifolds.Also, the lattercan beviewedassmapsofzero-dimensionaldiffieties.

Diffieties andsmapsare objects andmorphisms,respectively,of a category
called thecategoryofdifferentialequations.
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Nowwehaveto introducetheinfinitesimalversionofdiffiety symmetries.Let
(9bea diffiety. A vectorfield X on (9 is called a trivial contactfield (on (9) if
X0nC0 for everyOn (9. HereX0 denotesthevectorof thefield X assignedto 0.

Definition. A vectorfield X on (9is calledacontactfield or a ‘~tf-field if the com-
mutator[X, Y] is atrivial contactfield for everytrivial contactfield Y.

It resultsfrom the completeintegrabilityof the contactstructureon (9 that
commutatorsof trivial contactvectorfieldsarealsotrivial contactfields. In other
words,theset ~D ( (9) of all trivial contactfieldson (9is aLie algebra.

Now it is easily seenfrom the definition andthe Jacobiidentity that cf-fields
on (9form aLie algebrawith respectto the standardcommutatoroperationand
that cfD ( (9) is anidealof it. We denotethisalgebraby D ~ ( !2). ThequotientLie
algebra

Sym (9=Dv((9)/cfD((9)

is calledthe symmetry algebra of (9. Specializingthisdefinitionto thecase(9=
we come to the (higher-)symmetryalgebraof a systemof partial differential
equationsgivenby its label ~?![or by (10)].

Wereferthe readerto Refs.[51,17] for themotivationof theabovequotienting.
ElementsofthealgebraSym 9?! arecalled (higher) infinitesimalsymmetriesof

the systemof partialdifferentialequationsgivenby the label 9?!.

9. Infinitesimalsymmetriesof partial differentialequationsaresecondary
quantizedvectorfields

A descriptionofthealgebraSym (Qin localcoordinateswill beneededtojustify
thisassertion.We canrestrictourselvesto thecase(9= ~ becauseeverydiffiety
(9is locallyofthisform.

First ofall, wewill considerthesimplestsituationwhen9?! isthe“empty” equa-
tion 0=0. In this case‘l~9~=J°°(E,n) andwe canusea local chartof the form
(x, u, ..., ut,...) describedabove.

Coordinateexpressionsof trivial cf-fields in thesecoordinateslook as

Y= ~ a1D1, a1n~(E,n),

whereD, is thetotal derivativeoperator(12).
Now, let ~ ~ ~ ~9m), ~1n~(E, n), bean P

tm-valuedfunctionon P°(E,n).
This determinestheso-calledevolutionary-derivationoperator
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(15)

which is avectorfield on J~(E,n). In fact, ~. is a cf-field andq is called the
generatingfunctionof it. Thefollowing resultgivesusthe necessarylocal descrip-
tion of cf-fields.

Proposition.Every cf-fieldXonJ°°(E, n) canbe uniquelypresentedin theform

X=+Y, (16)

whereYis a trivial cf-field.

Also, we have

~ ~w] ~{cmw}

where

(17)

This bracketoperationsuppliesthe linear spaceof all smoothPtm-valuedfunc-
tions, definedon the consideredlocal chart,with aLie algebrastructure.Then
theabovepropositionshowsthisLiealgebrato belocally isomorphicwith theLie
algebraSymJ°°(E, n).

If~nSymJ~(E,n) andx=~mod cfD(J~(E,n)), ç~is alsocalledthe gener-
atingfunctionofx (with respectto thechosencoordinatesystem).

Remark.Thebracket(17) coincideswith thestandardPoissonbracketfor func-
tions~, ~iin.~ (E, n) supposingthatm= 1 and~, ~t’ do not dependon u.

Now we observe that every symmetry ~b:@‘~—~9~’~generates a map
c~:Sol 9?!-.+ Sol 9?I of the “space”of all local solutionsof 9?f~In fact, it transforms
an integralsubmanifoldof 9?ç~into anotherone as is clearlyseenfrom the defi-
nitions. Therefore,identifying integralsubmanifoldsof ~ with localsolutions
of 9?! aswas explainedbeforewegetthemap

When 9?’ is the “empty” equation0=0, then9?!~=J~(E,n) andthe set Sol 9?!
is canonicallyidentified with the set of all n-dimensionalsubmanifoldsof E.
Therefore,everysymmetry b:J~’(E, n) —~J°°(E, n) generatesa transformation
c~of the “space”of all n-dimensionalsubmanifoldsof E.

By the samereasoningeveryinfinitesimalsymmetryof 9?~,i.e. every cf-field,
sayX, on 9?(~generatesa (virtual) flow on the “space”Sol 9?’. The velocity field
of this flow isgiven by the formula

(18)
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in which t is a newindependentvariable (the “evolution time”) andX=+ Y,
o= ~ ..., ço,1~),accordingto theaboveproposition.

It is seenfrom (18) thatthe flow on So! 9?! generatedby X doesnot dependon
its trivial part Y. In otherwords, c~?~fie1dsbelongingto the samecosetmodulo
~D ( 9~)generatethe sameflow on Sot 9?!. This is why theLie algebraD~((9) of
all contactfields is to bequotientedby trivial onesin orderto obtaintrue sym-
metries.Themeaningof generatingfunctionsbecomesclearfrom (18).

Now we notethat the generatingfunction occuringin (18) is not arbitrary
unless9?,’~=J~(E,n). In fact, it mustsatisfythe following equation,supposing
that 9?! is givenby (10):

F~0.

HereF= (F1, ..., F,) and

~Da ...

is an (lx m) matrix differentialoperatoron J°°(E, n) andbars over ‘F and~
indicatethe restrictionsto 9?!~.

It isnaturalnowto ask:whatdothenotionsjustintroducedmeanwhenapplied
to zero-dimensionaldiffieties, i.e. to usualmanifolds (seethe endof section7).
In thiscasethecontactdistributioniszerodimensionaland,therefore,~D(M) = 0
for a manifoldM viewedas azero-dimensionaldiffiety. By the samereasoning
everyvectorfield on Mis contactandweseethat SymM=D(M), whereD(M)
standsfor theLie algebraof all vectorfieldson M.

Sincen= 0 in the situationin question,every local charton M, sayu
1, ...,

canberegardedas adividedone.Thisshowsthatthestandardcoordinateexpres-
sionX=~,~i,(u)8/t~iu1,u= (u’, ..., utm), for avectorfield Xon Mis aparticular
caseof(l5).Namely,wehaveX=~,for~~=(q

1(u), ..., ç~~(U)),andthesystem
(18) looks in this caseas

i=1,...,m. (19)

But in (19) werecognizetheordinarydifferentialequationsofcharacteristicsfor
thefirst-orderpartial differentialoperatorX= >~,,�J/�)u’.Now theanalogyX ~

(19) i-+ (18) motivatesthe following principalstatement:

1f 0 (9i, ~ (I’m) is thegeneratingfunction ofa symmetry~eSym ~, then the
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system(18) ofpartialdifferentialequationscanbe regardednaturallyasthechar-
acteristicsystemcorrespondingto theoperatorx.

In virtue of (3), this givesthe desiredsolution of the main problem(4) for
first-orderoperators:

Symmetriesofpartial differentialequationsarefirst-order secondaryquantized
differentialoperators.

This is our startingpoint whenwe look for secondaryquantizeddifferential
operatorsofhigherorders.Before,however,we will discusssomeperspectivesof
the symmetrytheory for partial differential equations,becauseof its potential
importancefor the future secondarycalculus.

10. Digression: on symmetriesof partial differentialequations

Besidesthejustmentionedaim, in the first part of this sectionwe will collect
somebriefhistoricalremarksin order to illustratethe previousdiscussionand,
also,for someterminologicalreasons.

The symmetrytheory for differentialequationswas foundedby Lie, who cre-
atedboththe conceptualstructureof thistheoryandthe maintechnicaltools of
it (seeRef. [23]). Unfortunately,only thetwo simplest,in asense,aspectsof his
work, namelyLie groupsandLie algebras,weremainly assimilatedby the math-
ematicalcommunity,and then developedin thousandsof works which have
nothingin commonwith differential equations.As we havealreadymentioned,
thesymmetriesof adifferentialequationby Lie aretransformationsof dependent
andindependentvariables,or thefirst-ordercontacttransformations,discovered
by Lie himself, which leave invariantthe chosenlabel of this equation.We re-
markthat the so-definedsymmetrygroupor algebracanactuallydependon the
choiceof a labelof theequationin question.Also, generatingfunctionsof these
classicalinfinitesimalsymmetriescandependonly onderivativesnothigherthan
first order.Thismakescleartheinterrelationsbetweenclassicalandmodernsym-
metry theories.

The first systematicattemptsto applyLie’s theory to the mechanicsof contin-
uousmediaweremadeby Ovsiannikovandhis collaboratorsabout70—80 years
after Lie’s original work (seeRef. [34]). Theseauthorsmerelyelaboratedsome
technicalaspectsof Lie’s theory, while its conceptualcontentremainedun-
touched.Probably,OvsiannikovwasthefirstwhorecognizedLie’s theorybehind
manyspecialmethodsandtricks in usein mechanics.Theso-calleddimensional
analysisby SedovandBirkhoff (seeRefs. [37], [4]) ismaybethe mostremark-
ableexampleof thiskind.
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It lookssurprisingthat the first attemptsto generalizethe classicalnotion of
symmetryweremadealmostimmediatelyafterLie’s work, first by Bäcklundand
thenby Noether.For example,one canfind acoordinate-wisedefinition of cf-
fields on J00(~~~± ~, n) in Ref. [3] by Bäcklund.Ofcourse,the mentionedworks
of BäcklundandNoethercouldnot be well basedatthattime, becauseoflackof
experience in working with infinite-dimensional manifolds. For example,
Bäcklundconsideredas integrableall vectorfields on infinite jets.Moreover,one
canfind thesamedeficiencyin somerecentworks(for instance,Ref. [2]).

New timesfor thesymmetrytheoryarrivedwith the discoveryof non-linear
equationsintegrablevia the so-calledinversescatteringtransformmethod.The
first examplesof non-classical(“higher”) symmetrieswere foundat that time.
For instance,it turnedout thatthehigheranalogsoftheKorteweg—deVriesequa-
tion are,in fact, its non-classicalsymmetries.

Apparently,therigorousnon-classicalsymmetrytheorystartswith the workby
Kupershmidt[19] in whichall cf-fields on J°°irwerecompletelydescribed.Then
theauthorintroducedall necessarybasicnotions,constructionsandformulasof
thistheory,someof which weresketchedabove[44,46,47]. Later on, someof
them were repeatedby Ibragimov [12,13] andusedby Olver in his textbook
[33].

We call thesenew non-classicalsymmetries“higher” to emphasizethat their
generatingfunctionscandependon derivativesofarbitraryorder,unliketheclas-
sicalones,whichcandependonly on derivativesof ordernot greaterthanone.In
thecurrentliteraturetheterms“generalizedsymmetries”(for instance,Ref. [33])
and“Lie—Bäcklundtransformations”(for instance,Ref. [13]) arealsousedin
thesamesense.

The sketchedsymmetry theory is presented“in action” in Ref. [56], where
attentionis paidto the relevantcomputationalaspectsincludingthe problemof
computerization.

It seemsthat foundationsof the “higher” symmetrytheoryas well as the cor-
respondingcomputationalalgorithmsarenowwell established.So,themaingen-
eralproblemin thisfield is to enlargetheareaof possibleapplicationsdeveloping
andelaboratingtheunderlyingtechniques.Anothervery interestingproblemhere
is: what arethe obstaclesfor partial differentialequationsto besymmetric?It is
remarkablethatthis problemadmitsanaturalsolution in termsof secondary
differentialcalculus.Unfortunately,wecannottouchuponthistopic here.

Ontheotherhand,onecanimaginenaturallyageneralizationof thistheoryin
whichgeneratingfunctionsof symmetriescould dependnot only on derivatives
of arbitraryorderbut alsoon “non-local” variablessuchas ffdx, fe .~. In fact,
thereexista numberof problemssuggestingsucha generalization,andthe first
few stepsin thisdirectionhavealreadybeentaken[16,22,14,32,7,5].

We canapplyonceagainthe philosophyof section4 in searchingthe desired
conceptof non-localsymmetry.This meansansweringthe question“what are
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differential equations”in a differentmannerthanin section4. Below, we will
indicateverybriefly how this canbe done (seeRef. [16] for moredetailsand
motivations).

Let (9, &‘be diffieties, Dim (9= Dim (9’.A smapl’: (9—~(9’is saidto be acov-
ering of (9 if d0Cl(C0)= C~~~(g),VOn (9’. A symmetry~nSym (9’is saidto be a non-
local (infinitesimal) symmetry,or, moreexactly, a Cl-symmetryof (9. We stress
thatnon-localsymmetriesof (9 arepairsofthe form (Cl,x)~whereCl’ isacovering
of (9 andx is a “usual” symmetryof the coveringdiffiety (9’. Roughlyspeaking,
thereasonto call theso-definedsymmetriesnon-localisthat functionson (9’ (in
particular,the generatingones)areseenby an “observer”on Casdependingon
somenew(“non-local”) variablescomparedto thoseon (9.

Example.Considerthe Burgersequation9?’ = { u1= uu~+ u~~}andthe heatequa-
tion ~= { v, = ~ The Cole—Hopfsubstitutionu= 2v~/v connectingtheseequa-
tionsis, in fact, thelabelof acoveringb: ~‘c~— ~ Therefore,highersymmetries
of the heat equationcanbe consideredas non-localsymmetriesof the Burgers
equation.The heatequationis linear andsoeverysolutiona(x, t) of it canbe
treatedalsoas a symmetryof it with generatingfunctiona(x, t). On the other
hand, the generatingfunction of the correspondingnon-localsymmetryof the
Burgersequationis

(2a~—au)exp(_~Ju
It involvesa non-localvariable,namely, f u dx.

The so-definednon-localsymmetriescan beusedin the standardapplications
exactly in the sameway as the classicalor higherones.However,the fact that
differentnon-localsymmetrieslive, generally,on differentcoveringsleadto some
non-standardand surprisingfeaturesof non-localtheory. One of them is the
following.

Evidently,all l’~symmetriesof (9 constitutefor afixed Cl): (9’-~ (9 aLie algebra
which coincideswith Sym (9’.But, at first glance,it seemsto beabsurdto look
for thecommutatorof two non-localsymmetriesdefinedon two differentcover-
ings. However, it turns out to be possibleto find the desiredcommutatoron a
suitablethird covering.Therefore,in orderto organizeall non-localsymmetries
of (9 into somethinglike a Lie algebraonemust takeinto considerationsimulta-
neouslyall coveringsof (9.

All coveringsof agivendiffiety constitutein anaturalwayacategorywhichwe
havecalleda cobweb(seeRef. [16]). Now the philosophyof section4 leadsus
to answerthe questionwhat are differentialequationsby sayingthat they are
cobwebs.Thisanswerimplies many importantconsequencesfor secondarycal-
culus. But at the moment this is only a beautiful perspectiveto be explored
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systematically.
We remarkalsothat,while diffieties areanalogsof affine varietiesof algebraic

geometry,cobwebsareanalogsof fieldsof rationalfunctionson them.

11.Secondary(“quantized”) functions

It seemsnaturalto definehigher-ordersecondaryquantizeddifferentialoper-
atorsascompositionsof first-orderones.Butgoingthiswaywemeetimmediately
the following difficulty.

Rememberthatfirst-ordersecondarydifferentialoperatorsareelementsof the
Lie algebraSym C. On the otherhand, the latter are not properdifferentialop-
eratorsbut cosets(equivalenceclasses)of them.So the questionarises:how to
composethesecosets?We leaveto the interestedreaderthe taskof verifying that
a directattackto thisproblemfails.

Another aspectof the problemcanbe extractedfrom asimilar question:on
what kind of objectsdo secondarydifferentialoperatorsact?No doubt,second-
ary differential operatorsshouldbe properoperators,i.e. act on somekind of
objects.The usualfunctionscannotbetakenas such.Onecanseethis by trying
to definean actionof the algebraSym ConC°((9). The only naturalway to do
this is to put x(f)=X(f) for ~nSym (9, XnD~((9),~=Xmod cfD((9) and
fnC~(C). But this definition is clearlynot correct.Namely,if X1, X2ED~( C)
andX1 ~X2 mod cfD( (9), then,generally,X1 (J) �X2(f) if X1 ~

However,it is clearthat,linguistically, secondaryoperatorsshouldacton sec-
ondaryfunctionsandwe shift this questionby askingwhat theyare.Thefollow-
ing analogywill helpusto answer.

Let A’ (M) denotethespaceof ith-degreedifferentialformson themanifoldM.
Themap

C~(M)-~-’A’(M) (20)

(the standarddifferential)providesextremalproblemson smoothfunctionson
Mwith the “universalsolution”.Treatingsmoothmanifoldsas zero-dimensional
diffieties we seethat the analogof (20) shouldbe amapwhich providesvaria-
tional problemsfor multiple integralswith the universalsolution.But thisis the
well-knownEuler—Lagrangemap:

variationalfunctionals, ~ differential
,, —+ (21)or actions operators

i.e. ~associateswith an “action” J~L dx1 . . dx,, the left-hand side of the corre-
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spondingEuler—Lagrangeequation.Therefore,this analogybetween(20) and
(21) suggeststo adopt“actions”as secondary(or “quantized”) functions.This
idea is to be correctedbecause“actions”, as understoodin the standardway,
containa detail, parasiticfor ouraim, to beeliminated.This detail is the exact
referenceto thedomainof integrationQ. So, ournextproblemis to find amean-
ing for hieroglyphsof the form JL dx1”~dx~(without “Q”!). We will solveit by
interpretingthemassomekindofcohomologyclasses(formoremotivationsand
detailsseeRef. [9]). Butbeforethatweneedsomepreliminaries.

Let C bea diffiety, Dim C = n andlet A’( C) denotethe C°°((9)-moduleof all
ith-degreedifferentialformson C. We denoteby cfA’ ( C) thesubmoduleofA’ (C)
consistingof formswhoserestrictionson thecontactdistributionof C vanish.In
otherwords,

cfA’(C)~w~w(Y1,..., Y1)=0, RY1,..., Y,ncfD(C).

We put

A
1(C)=A’(C)/cfA’(C).

Elementsof A’ ( C) are called horizontal differential forms on C. Evidently,
A’(C)=Oifi>n.

It iseasyto seethatd ( cfA’ (C)) c~cfA’±1(C) and,therefore,the standarddif-
ferentiald: A’ (C)~A’ +1((9) inducesthehorizontaldifferential

d:A’(C)-+A’~(C).

Ofcourse,d2=0 andthis enablesus to introducethe horizontalde Rhamcom-

plexof C:

0_A0(C) =C~(C) ~A1( C) ~ A~(C )~0

Cohomologiesof thiscomplexarecalledhorizontaldeRhamcohomologiesofC.
Theyaredenotedbyli’(C),i=O,l,...,n.

Finally,weacceptthefollowing basicinterpretation:

Secondary(or “quantized”)functionson C areelementsofthecohomologygroup
H’~( C).

In otherwords,we considerthe cohomologygroupIi”( C), Dim C = n, to be
theanalogof the smoothfunctionalgebrasin SecondaryCalculus.

To justify the choicemadewe will describein coordinatesthe “horizontal”
constructions,justgiven, for C =P°(E, n). First of all, weobservethatthe coset
of adifferential form wcA’(J°”(E,n)) modulo cfA’(J°°(E,n)) containsonly
oneelementof the form



AM. Vinogradov/JournalofGeometryandPhysics14(1994)146—194 171

~ a,~1...,0(x,u, ..., u1~,...)dxk1 A A dxk,,
1<ki.<•<k,<n

whereak,...k~EC°°(J~(E,n)). Thecharacteristicfeatureof suchformsis thatthe
differentialsdud, ..., du~,... do not enterinto theircoordinateexpressions.There-
fore, themoduleA’ (J~(E, n)) canbeidentifiedlocally with themoduleof forms
of thistype.

Undertheidentificationmade,the horizontaldeRhamdifferentiald looksas

dp= ~ DS(ak,...k,) dxSAdxkl A”AdXk,.
ski k,

In particular,everyhorizontal(n — 1)-form can berepresenteduniquelyas

p=~(_l)l_1a,dxlAAd~,A~.Adx~, a1cC~(J°°(E,n)),

and

dp=div(A)dx1...dx~,

whereA=(a1, ..., a~)anddiv A= >~,D,(a,).Also, horizontaln-formslook as

L(x,u,...,u’,...)dx1A”~Adx,,, LcC°°(J°°(E,n)),

andonecanrecognizelagrangiandensitiesin them.So,we seethatthehorizontal
cohomologyIi~(J°°(E,n)) canbe identified locally with the linear spaceof
equivalenceclassesof lagrangiandensitieson J°°(E, n) with respectto the fol-
lowing relation:

L1-~L2 ~ L1—L2=divA forsomeA.

Ontheotherhand,actionsJQL1dx1~~dx~,i= 1, 2 areequivalentin thesensethat
they leadto identicalEuler—Lagrangeequationsiff L1 L2. This is independent
of the choice of Q. For thesereasonsit is natural to identify hieroglyphs
JL ~ ~dx~with n-dimensionalhorizontalcohomologyclasses.

We concludethis sectionnotingthat similar reasoningsarevalid for arbitrary
diffieties aswell.

12.Higher-orderscalarsecondary(“quantized”)differentialoperators

First of all, we mustjustify theaboveadopteddefinition of secondaryfunc-
tions, demonstratingthat,indeed,first-orderdifferentialoperatorsactnaturally
on them.In otherwords,wemustlook for a naturalactionof the algebraSym C
on thespacefin ( (9). This,however,canbe donestraightforwardly.

First, notethat, if Xc D (C), w~cfA’ ( C) andL~denotesthe Lie derivative
alongX, thenL~(w)n cfA’( C) asresultsfrom definitionsandthe fact that
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cfA1(C)=cfA1(C)AA’~(C), i>l.

This allows us to definethe Lie derivative on horizontal forms by passingto
quotients:

L~:A’(C)—~A’(C).

Next, let

xeSymC, ~=XmodcfD(C) forXcD~(C),

OnH”(C), O=wmoddA”~(C) forwnA”(C).

We definenow theaction~ on 0 by putting

X(O):={Lx(W) moddA”’(C)}nH”(C),

where L~denotesthe Lie derivativealongX. The correctness of this definition
follows directly from the following two facts:

(i) L~(w)cdA”’(C) ifwnA”(C) and YecfD(C),

(ii) L~od=d~L~.
They both are direct consequences of definitions.
Nowwe see that the above definition of secondary functions correlates nicely

with other “secondary” constructions and,therefore,canserveas anexamplein
proceedingto more complicated“secondary”notions.For example,let us ob-
servethat wehavesucceededto definea correctactionof onequotient [namely,
Sym C=D~(C)/cfD(C)] on another [namely, fi”(C)=A~(C)/dA”~(C)]
owing to:

1. D ~( C) consists of first-order differentialoperatorswhich acton theC~( C) -

moduleA”( C) leavingd.il” 1((9) invariant;
2. the imagesof A” ( C ) underthe action of first-order operators belonging to

cfD(C) arecontainedindA”(C).
We will get the necessarygeneralizationto higher-ordersecondarydifferential
operators simply by replacing the words“first-order” by “kth-order” in 1 and2
above. More exactly, let Diffk(A”(C)) denote the C~(C)-module of all
(“usual”) differential operators of order ~k acting on A” ( C) and put

Diffk(C)={AcDiffk(A~(C))IA(dA”’(C)) ,~j~4fl_l((9)}

P~ffk(C)={AcDiffk(A”(C)) 14(A”(C)) cdA”’(C)}

Thenthe spaceof all scalarsecondary(“quantized”) operatorsof order ~k on C
is defined to be the quotient

~iff(C=Diffk(C)/Diffk((9) . (22)

Ofcourse,every secondaryoperatorAnTiffk( C) canbe understood as an actual
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operator

4:H”(C)~H”(C)

actingon secondaryfunctions.In fact, if

A=5modDiffk(C) for önDiffk(C),

t9=wmoddA”1(C) for wnA”(C),

thenthe horizontalcohomologyclass

4(ø):={~(w)moddA”1(C)}

is well defined, i.e., does not depend on the choice of the representatives ô and w.
For C=J~(E, n) the so-defined secondary differential operators admit the

following coordinate description. Operatorsof the form
k as

~ ~ ~ ,, ~ +const.
5=1 ti-i, ~jPcj,

Si 5,

where a
1, ..., a~aremulti-indices,arecalled vertical (with respect to the chosen

coordinate system). Then it can be proved that every coset

4={ô modDiffk(J°°(E,n))}E~if~(J~(E,n))

for önDiffk(J°°(E, n)), contains only one vertical operator. So, the quotient (22)
representing secondary differentialoperatorscan be identified locally with the
set of all vertical secondaryoperators.These last operators of order ~k can be
presentedin the form

= ~ ~(V’)o8/0p~,,

where i
7=(V1, V2, j7~) V’EDiffk_l~(E, n), arearbitraryverticaloperators

and

..., [D,~, r7’]...]

where a= (i
1, ...~ ia). The generating operator Vis the higher-order analog of the

generating functions for evolutionary derivations but, unlike the latter, it is not
defined uniquely if k> 1.

Secondary operators of order > 1 are not reduced to compositions of first-order
secondary operators. This fact is instructive in connection with the discussion at
the beginning of section 11.

Wenote, also, that an explicit description of secondary differential operators
on arbitrarydiffieties is a muchmoredifficult problem.

Further details, results and alternative views concerningsecondarydifferential
operators can be found in Ref. [9].
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Finally, turning back to question (4) we can exhibit the simplest kth order
linear secondary (quantized) differential equations as

A(H)=0, An~iff1(C), HnH”(C).

It mustbe emphasized,however,that theseequationsform only avery special
class of secondarydifferential equations.For instance,differentials d’~”~=
~ ( C) of the cf-spectral sequence (see sections 13 and 14) giveusotherexam-
plesof secondaryquantizeddifferentialoperatorsand,therefore,secondarydif-
ferentialequations.Oneof them looksas

where JL dxnfi~(C) and f is the Euler operator assigning to an action
f L dxcfi” ( C) the corresponding Euler—Lagrange equation. This is due to the
fact that f=d?”’ (see section 14). We notealsothat operatorsd~”~areof finite
order, say m(k), when being restricted to elements of the kth filtration, but
m(k)—oowhenk~co.For example, ir(k) = 2k for the operator d?”’ =

13. Secondary(“quantized”)differential forms. cf-spectralsequences

In this sectionwe will consideranotheraspectof secondarycalculus,namely,
secondary(“quantized”) differential forms. Whatarethey?This is a moredif-
ficult questionthanthe oneaboutsecondarydifferentialoperatorswe haveal-
readydiscussed.For this andother reasonswe will omit herethe preliminary
motivationsshowing,asbefore,howto arriveatexactdefinitions.However,some
“aposteriori” justificationswill begiven.

Let C beadiffiety. Adoptingthenotationsof section12 weconsiderthe algebra

~ A’(C)
isO

of all differential formson C andits ideal

cfA*(C)= ~ cfA’(C).
i~0

Denoteby cf~~A*( C) thekthpowerofthisideal, whichis, by definition,the linear
subspaceof A* ( C) generatedby all productsof the form w1 A a)2 A A ~

0k,

w,n cfA*( C). The ideal cfA*( C) and,therefore,all ideals cfkA*( C) arestablewith
respectto theexteriordifferentiald. So,weget thefollowing filtration:

A*(C)DcfA*(C)~cf2A*(C)~...~cfkA*(C)~.. (23)

of the de Rham complexof C by its subcomplexes{ cf~~A*(C),d}. The ideals
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cfkA* ( C) arenaturallygraded,

cfkA*(C) ~ cfkAk+s(C)
s~0

where

cfkAk±5(C)cfkA*((9)flAk+5(C)

Now wewill achieve our goal by making use of standard spectral sequence ar-
gumentsappliedto thefiltration (23) (see,for instance,Ref. [31] forthegeneral
theory).We start with thequotients

E~~(C):=cfPAP+~(C)/cfP±lAP±Q(C)

connectedin successionwith the differentials

~

which arenaturalquotientsof the exteriordifferential d. They all constitutea
complex, namely,

E0(C)=~E~~~(C),d0=~d~, d0:E0(C)—*E0(C),

which is called the zero term of the spectral sequence corresponding to the filtra-
tion (23). Its first term is thendefinedto be the cohomologyof the zeroterm.
More exactly, we put

E’~”
1(C) :=kerd~~~/imd~~1

andnote that the exteriordifferential d generatesby passingto quotientsthe
differentials

~

The first term is now defined to be the complex

E
1(C)= ~E~~i~(C), d1= ~ d1:E1(C)—~E1(C).

Continuingthisprocedureonecandefinethe rth term

Er( C) = ~ E~”~(C), dr = ~

~ :E~”
1(C)_~E~r~_F±(C)

as cohomologyof the (r— 1 )th term.
The so definedsystem {Er( C), dr} of complexesis called the cf-spectralse-

quenceof thediffiety C. It is oftenconvenientto displaythetermsof aspectral
sequencein adiagramas shownon Fig. 2. Forexample,if Dim C = n, thenthe
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E

Lr(~9)

‘.,~ P
Fig. 2.

- E0~

Fig. 3.

E1~N)
0

Fig. 4.

structureof the zero term of the cf-spectralsequenceof C is illustrated by the
diagram of Fig. 3; all its non-trivial terms E~(C) are situatedin the shaded
region.Thesamepictureisobtainedfor all E~( C), r> 0, asis easilydeducedfrom
the definitions.

Definition. ElementsofE1 (C) arecalledsecondary(“quantized”) differentialforms
on the diffiety C.

Somereasonsin favor of thisinterpretationareas follows. Let M be a finite-
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dimensionalmanifold consideredasa zero-dimensionaldiffiety (seesection7).
Thenthe diagramfor the first term of its cf-spectralsequencelooksas shownin
Fig. 4. Moreover,d’~’°=d. In otherwords,we seethat thedeRhamcomplexof M
coincideswith the (generally)non-trivial partof the first term of its cf-spectral
sequence.

We canobservethatstandardconstructionsandformulaeconnecting“usual”
vector fields and differential forms are also valid for their secondary (“quan-
tized”) analogs.For instance,the insertionoperatorof secondaryvector fields
(“symmetries”) into secondarydifferential forms as well as the corresponding
Lie derivativesarewell defined.Moreover,theyareconnectedby meansof the
secondary analog of the infinitesimal Stokes formula

L~j~od+doiy,

in whichthe exteriordifferentiald is to bereplacedby its secondaryanalog,i.e.
byd1(C).

Finally, weremarkthat secondarydifferential formsarebigradedobjectsun-
like the “usual”oneswhichareonly monograded.Thereasonisclearlyseenfrom
the abovediagrams.This is an illustrationof the fact that secondaryobjectsare
richerandmorecomplicatedstructuresthantheir “primary” analogs.The same
ideacanbe expressedalternativelyby saying that the “usual” (or “primary”)
mathematicalobjectsaredegenerateformsof thesecondaryones.Thisstatement
canbe alsoviewedasthe following mathematicalparaphraseby the Bohrcorre-
spondenceprinciple:

SecondaryCalculus~Dim-.0, Calculus~

Thecobwebtheory (seetheendof section10)allowsusto givean exactmean-
ing to “Dim —+ 0”. ThisisbecausetheDimension(notdimension!)isanP-valued
functionin theframeworkofthistheory.

14.Digression: how doesthe cf-spectral sequencework?

In this sectionwe collect someresults which demonstratesecondarydifferen-
tial forms“in action”.The following two diagramsillustratehowtheterm E1 ( C),
i.e. secondarydifferentialforms, reflect the structureof C. They makemorepre-
cise the generalestimateof the first termgiven by the diagramof Fig. 3. In the
general case, the numberof non-trivial rows on the diagram of E1(9?c~),
IW={F=0}, is equalto the highestnumberof non-trivial Spencercohomology
groups of the universal linearization operator

1F (seesection 9).
Nowwewishto discussthemeaningof sometermsE~(C) ofparticularinter-
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C)
~ :

I
E~J”~E,~)

Fig. 5.

est.First of all, wehave

E?”(C)=H’(C)

(see section 11) as is easily seen from definitions. In particular, it follows that
elementsofthetermE?” ( 9?ç,)are“actions”ofvariationalproblemsconstrained
by the equation9?’ (seesection11). Moreover,if 22nE?” ( 9?’,~)is anaction,then

d?’~(~’)=0 (24)

is the corresponding constrained Euler—Lagrange equation. This gives a solution
of the “direct” problemof thecalculusof variationsin thegeneralcasesof local
constraints, i.e. given by means of differential equations. In particular, Eq. (24)
incorporatesautomaticallythe theoryof Lagrangemultipliers.

The standardspectralsequenceargumentsappliedto diagramsof the above
type allow one to solve immediately the so-called triviality problemfor lagrang-
ians bothin local andin global settings.Thisproblemis to describe those “ac-
tions”, or lagrangians, to which trivial Euler—Lagrange equations correspond. The
answer,say,for free (= non-constrained)problemsis that in thissenseglobally
trivial lagrangiandensitiesareof the form w+ dp, were a~is a closed differential
form on J1(E, n) and dp is a full divergence term (see section 11).

Let now 9?’ ~ Jk(E n) be the Euler—Lagrange equations corresponding to a la-
grangian22nH”(J~(E,n))=E?”’(J~(E,n)). ThenE~”(9?(~)consistsof allla-
grangiansalternative to ~‘. To computeall alternativelagrangiansone canuse
spectralsequenceargumentsas follows.

Let 9?’ satisfythe conditionsindicatedon the diagramof Fig. 6. We alsosup-
posethat 9?’ is formally integrable.Thenthe fact that the diagramfor E

1 (9?ç.)
consistsof two non-trivial rowsleadsdirectly to the following exactsequence:

E~’~
1(9?(~)

(25)



AM. VinogradovlJournalofGeometryandPhysics14 (1994)146—194 179

cv

a
~ /77/~/7~//7//7~7,~~ in a determined

system of p.d,e.

with the regular

symho1

Fig. 6.

where H’ (9?’) denotesthe ith de Rham cohomology group of 9?’. Terms
Eq”’ (9?ç,)of thissequencecan beevaluatedor evencomputedexactlyby using
Spencercohomologytypetechniques.Thisgivesa solutionof the alternativela-
grangianproblemfor agiven 9?’ as well as of anumberof similarproblems.The
most famousof them is theinverseproblemof the calculusof variations.This is
the problemof recognizingEuler—Lagrangeequationsin the casewhenthecon-
straints are given by 9?!. Its solution is equivalentto the computation of
E.”’ ( 9?ç,),which is anotherterm of (25). Also, the descriptionof symplectic
structuresfor field theoriesconstrainedby 9?’ is reducedto computationof the
termE~”’(9?’~)of(25).

Going backto the first term of the cf-spectralsequencewe notethat theterm
E?”~(9?’~)canbeinterpretedas thespaceof all conservationlaws for solutions
of 9?’. Thisobservationallowsoneto developaconsistenttheoryofconservation
laws (=“conservedcurrents”=”integralof motion”) independentlyof anysym-
metry considerations,which worksas well in situationswherethe latter cannot
evenbe applied.Thistheoryis sketchedbelowfor formally integrableequations
9?’ satisfyingassumptionswhichguaranteethetwo-row diagramforE1 (9?’~~)(Fig.
6).

First of all, the diagram of Fig. 6 shows that

H’(9?)=E~”’
1(9?f

5~) ~E?”’’(9?!~).

So, cohomologyclassesQnH”
1 (9?’) canbeinterpretedas conservationlaws of

9?’. We callthem rigid. Also, weseethatthe kernelof
d?”’’ :E?”’’(9?!~)—*E1(9?~)

consistsof theserigid conservationlaws.Theycannotdistinguishtwo solutions
of 9?’ if onecanbedeformedinto another.Forthisandsomeotherreasonswecan
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neglect them. On the other hand, conservation laws are uniquely characterized
up to the rigid ones by their images under the differential d?”’ ‘.This motivates
us to introduce the following basic notion: the image d?”’~’ (Q) ~ E~”’~’(9?(~)of

a conservation law QnE?”’~1 (9?ç.) is called its generatingfunction.
The following isomorphism is fundamental in finding generating functions:

E~”’1(9?’,,,)=ker1~.,

where9?’ = {F= 0}, 1F = 1F I ~ (seesection9) and“*“ standsfor formal conjuga-
tion. So, generatingfunctionsof conservationlaws canbe found by solving the
equation

i~=o. (26)

This is the mostefficient generalmethodof finding conservationlaws for con-
creteequations(seeRef. [56] whereit is demonstrated“in action”).

Remark.In fact, not all solutionsof (26) aregeneratingfunctionsof conserva-
tion laws. However, we can make use of the differential d~”~1to throw away
“unnecessary”solutionsof (26).

Nowwe note that generating functions of symmetries (see_section 10 )and of

conservation laws satisfy the mutually conjugate equations lFco=O and ‘~‘W=O.
Also, we have ‘F= l~for Euler—Lagrangeequations. This demonstrates clearly the
natureof the intimate relations between symmetries and conservation laws for
Euler—Lagrangeequationsas givenby the classicaltheoremof Noether.Butnow
we seethat the samerelationsholdfor amuchwider classof equations,which
canbe calledconformlyself-adjoint,i.e., suchthat

1* A I
F F,

whereA isaninvertible operatoron 9?~,.Theequationu~= u~is a simple example
of thatmatterfor whichA = — 1.

An interpretation of the term E
2(9?~)is thatit consists of characteristic classes

of bordismscomposedof solutionsof 9?’. The standard“differential characteris-
tic classes”theoriescanbeobtainedin thisway underasuitablechoiceof 9?’ (see
Ref. [54]). Thisapproachleads,however,to finercharacteristicclasses,for in-
stance,specialcharacteristicclasses.We illustratethistopic for solutionsof the
(vacuum)Einsteinequations,or Einsteinmanifolds.Let 9?’ be the Einsteinsys-
tem on amanifoldM. Thenit ispossibleto showthat

9?’5jDiffeo(M)=9?(~,,

whereDiffeo(M) is thediffeomorphism group of M, acting naturally on 9?~, and
9?” is a certain system of partial differential equations. In fact, lW’ does not depend
on M and, therefore,its solutionsare just diffeomorphism classes of Einstein
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manifolds. The corresponding special characteristic classes are elements of
E2 (9?! ~).

The cf-spectralsequencemachinerywas discoveredby theauthorwhile trying
to solve the aforementionedlocaland global problemsof the calculusof varia-
tions andof conservationslaws [46,50]. A very small number of works were
publishedsincethenin thisdirectionandweconcludeby listing someofthemost
importantones [45,46,50,54,38,40,41,29,51].

15.Quantizationor singularitypropagation?Heisenbergor Schrödinger?

In the precedingpageswe have reachedthe coastsof “terra incognita”, i.e.
diffieties andsecondarycalculuson them,whoseexistencewas predictedby the
linguisticizedversionof theBohrcorrespondenceprincipleas formulatedin sec-
tion 3. Beingthe exactanalogof algebraicgeometryfor partial differentialequa-
tions this branchof pure mathematicsdeservesto be exploredsystematically,
maybemuch more so thanalgebraicgeometryitself and independentlyof the
possiblephysicalapplicationsthat stimulatedthe expedition.Later on we will
discussbriefly someothertopicsrelatedto secondarycalculus.Butnow it would
betimely to reexaminehow muchwehaveapproachedthesolutionof the quan-
tization problemfor quantumfields after havinggot secondarycalculusat our
disposal.

It shouldbe stressedfrom the verybeginningthat the passageto the “linguis-
ticized” version of the Bohr principle inevitably cost us the loss of its original
physicalcontext.On the other hand, the accumulatedexperiencein secondary
calculusconvincesusthat everynaturalconstructionin the areaof classicalCal-
culushasits secondaryanalog,which canbe foundby meansof a more or less
regularprocedure.So,onecanexpectto deducefundamentalQFT equationsby
“secondarizing”a samplesituationin whichboththesourceandthetargetof the
Bohr principlebelongto the areaof classicalCalculus.

Evidently, quantummechanicsof particlesis exactlysucha sampledueto the
fact that the Bohr correspondenceprinciple here startsfrom differential (the
Schrodinger)equationsandfinishes also at differential (the Hamilton) equa-
tions. However,in thiscasethe Bohr principle is to be reinterpretedexclusively
in termsof Calculusto becomesecondarizable.This is thekeypoint.

The desiredreinterpretationis not obviousand, in particularshould not be
basedon “h—0”, formal serieson H, deformations,Hilbert spacesandsimilar
things.We acceptformula(2) to be the first approximation.Thenourapproach
to QFTcanbesummarizedas

FIELD QUANTIZATION=CHAR~01, (27)

where,9’ standsfor “secondarization”.Hence,the questionto be answeredfirst
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is: what is the solution singularity type (or types) outlined in section 3?
The last problembelongsto the theoryof solutionsingularitiesof partialdif-

ferentialequations,which hasnot beenelaboratedenoughup to nowto provide
us with the immediate answer. So, we postpone the direct attack to the future and
limit ourselveshereto aquick trip throughthe theoryof somespecialsolution
singularities called geometric.Besides all other, the reader can conceive from this
modelmorepreciseideason thegeneraltheoryas well as moredetailedmotiva-
tionsfor formula(2). But first we will permit ourselvessomeremarksof an his-
torical nature.

As it is well known, two different approaches, one by Heisenberg and the other
by Schrodinger,wereat the origin of quantummechanics.In modernterms,the
first of them is basedon a formal non-commutativedeformationof the commu-
tative algebraof classicalobservableswhile the latter proceedsfrom an analogy
with optics. They both were proclaimed and even proved equivalent and this is
just the point we would like to call in question now. Namely, it seems that a more
exactformulationof thisequivalencetheoremwouldbe:

TheSchrödingerpointofviewbecomesequivalentto theHeisenbergoneafterbeing
reducedappropriately.

Belowsomebriefgeneraljustificationsof this assertionaregivenandthe reader
is asked not to confuse “approach” with “picture” in what follows.

First, the Heisenbergapproachis “programmed”in the languageof operator
algebraswhile thatby Schrödingeris in Calculus.The former is non-localizable
in principle andthis is its greatdisadvantagein what concernsapplicationsto
fundamental(non-technical!)problemsof physics.In particular,thepassagefrom
onespace—timedomainto anothercannotbe expressedin termsof thislanguage
only (see,for instance,Ref. [10]). But, evidently, fundamentalphysical theo-
ries,both at classicalandquantumlevels,mustbe localizablein this senseby
their nature.On the otherhand,Calculusis the only localizablelanguagedueto
the fact thatlocalizableoperatorsarejustdifferentialones.

Second,in the Heisenbergapproachclassicalmechanicsappearsto bea limit
case of quantum mechanics or, vice versa, the latter is viewed to be a non-com-
mutativedeformationof the former. In particular,this meansthat theybothare
treatedto bethingsofthesamenaturethatdiffer from eachotherby aparameter.
This is not so in the frameworkof the Schrödingerapproach.In fact, as follows
from the generalmathematicalbackgroundof thepassagefrom waveto geomet-
rical optics, the latterappearsto beaparticularaspectoftheformer.So, applying
the analogybetweenquantummechanicsandopticsdiscoveredby Schrödinger
onecanconcludethat

classicalmechanicsis aparticular aspectofquantummechanics.
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In thisconnectionit wouldbeto thepoint to notethatPlanck’sconstantis atrue
constantand,therefore,“h—~0”canserveas aheuristictrick but not asaground-
stoneof thetheory.

Thus theseare,shortly,the reasonsin favor of the Schrodingeralternative.On
theotherhand,it is clearlyseenthatit hadno chancesto berealizedmathemati-
cally in the buildingperiodof quantumelectrodynamicsandotherquantumfield
theories.So, the Heisenbergalternativeremained,due to its formality andab-
straction,the only possibleway for progressof thesetheories.Thiswas its inva-
luablehistoricalmerit that seemsto be goingto be exhaustednow. Finally, we
addthat thispapercanberegardedalsoas anattemptto providethe Schrodinger
approachwith the mathematicaltools whicharenecessaryto extendit to QFT.

16. Geometricsingularitiesof solutionsof partialdifferentialequations

In this sectionwe presentgeometricsingularitiesof solutionsof (non-linear)
partialdifferentialequationsandsomegeneralresultson themthatarerelevant
to our discussionof the quantizationproblem. Someexamplesillustrating the
generaltheoryand, in particular,the mechanismconnectingwaveandgeometri-
caiopticsarecollectedin thenextsection.

Solutionsingularitieswhich we call geometricalarisenaturallyin the context
of thetheory of multivaluedsolutionsof (non-linear)partial differentialequa-
tions.Therearedifferentwaysto realizestrictly theideaofmultivaluednessand
wechoosethatonewhichisbasedon thenotionof R-manifold.This is as follows.

RecallthatasubmanifoldW~ Jk (E, n),0 ~ k< ~, is calledintegralif T0Wc C0
for everyOnJ’(E, n) (seesection6). An integralsubmanifoldWc Jk(E, n) is
called locallymaximalif no openpartof it belongsto anotherintegralsubmani-
fold of greaterdimension.

Definition. A locally maximaln-dimensionalintegralsubmanifoldof Jk(E,n) is
saidto bean R-manifold.

To motivatethisdefinition wenotethatmanifoldsof the form L (k) (seesec-
tion 5), whicharebasicfor thegeometrictheoryof partialdifferentialequations,
arecompletelycharacterizedby thefollowing two properties:

(i) L(k) is alocallymaximalintegralsubmanifold,
(ii) therestrictionofthe projection

akkl :J”(E, n)~J”’(E, n)

on L(k) is animmersion.
So, omitting (ii) we get the multivaluedanalogsof submanifoldsL(k), i.e. R-

manifolds.
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Remark.Thereexistdifferenttypesof locally maximal integralsubmanifoldsof
Jk(E n) which differ from eachotherby their dimensions.For instance,oneof

thesetypesis formedby fibers of the projectionakk..~ Theseareintegralsub-
manifoldsof thegreatestpossibledimension.

Informally R-manifolds can be treated,generally,as non-smoothn-dimen-
sionalsubmanifoldsofE whosesingularitiescanberesolvedby lifting themonto
a suitableJk(E n).

Now we define a multivaluedsolution of a partial differential equation
9?! Jk(E n) to beanR-manifold,sayW, belongingto oneof its extensionslW(5),
0i~s<oo: Wc ~s) ~Jk±s(E n).

If Wc J’(E, n) is an R-manifold then its singular,or branchpointsare defined
to bethe singularpointsoftheprojectionak,k : Jk(E n) Jk1 (E, n) restricted
to W(seeFig.7).

We stressherethat Wis asmooth (=non-singular)submanifoldofJ”(E, n)
andtheadjective“singular” refersto theprojectionakk_1.

A very rich andinterestingstructuraltheory standsbehindthesesimpledefi-
nitions.Thiscannotbereducedto thestandardsingularity (orcatastrophe)the-
ory. On thecontrary,the latteris aparticulardegeneratedcaseof theformer.

We startwith aclassificationof geometricsingularities,whichis, ofcourse,the
first structural problem to be considered. According to “the general principles”
we have to classify s-jets of R-manifolds in J”(E, n) for aprescribednaturals
under the group of contact transformations of this jet space. The simplest case
s= 1 is sufficient for ourpurposes.

Let Wc Jk(E n) be an R-manifoldandOnsing W. Thesubspacesof the tan-
gentspaceT0Jk(E,n) which areof the form T0WarecalledsingularR-planes(at
0). So, ourproblemisto classifysingularR-planes.

Let P= T0Wbea singularR-planeat 0. The subspaceP0 ofF whichconsistsof
vectorsannihilatedby ak,k_ is called the labelofF. It turns out thatsingularR-
planesareequivalentiff their labelsareequivalent.So, theclassificationproblem
inquestionisreducedto thelabelclassificationproblem.Wedefinethetype(sin-
gular ornot) of anR-planeto bethe dimensionof its label:

type P=dim F0, 0i~typeP~n.

Evidently,typeP= 0.~Pis non-singular.

____ - ~cf
.- Fig.7. ___
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Example.Branchedriemanniansurfacesareidenticalwith multivaluedsolutions
of the classicalCauchy—Riemannequation.Let Wbe oneof them.Thenthe set
sing Wconsists of a number of isolated points, say Oa. In thiscase(type Pa)= 2

for Pa T
0 W.

Thefinal resultofthe labelclassificationis as follows [55].

Theorem.Label equivalenceclassesofgeometricsingularities are in one-to-one
correspondencewith isomorphicclassesofunitarycommutativeP-algebraso that
thedimensionofa label is equalto thatofthealgebracorrespondingto it.

Recallthateveryunitarycommutativefinite-dimensionalalgebrasplits into a
direct sumof algebrasF(k), k= 1, 2, ..., where F(k) denotes the unitary F-algebra
generatedby oneelement~suchthat ~‘ = 0, ~ ~ 0 andF= P orC. Sucha split-
ting is not uniquebut themultiplicity numbersshowinghowmanytimesagiven
algebraF(k) entersit do not dependon the splitting. So,thesemultiplicity num-
bersdeterminecompletelythe isomorphismclassof the algebrain question.

Below wespeakofA-typegeometricsingularitiesreferringto the commutative
algebraA correspondingto it by theabovetheorem.

Examples.1. Sincethe only one-dimensionalP-algebrais ER itself, thereexistsonly
onelabeltypeof geometricsingularitieswith aone-dimensionallabel.Thistype
is realizedby R-manifoldsprojectedon the manifoldof independentvariablesas
foldings.For this reasonit is denotedby FOLD. The standardtheoryof charac-
teristiccovectorstakesanaturalpartin theFOLD-singularitytheory.

2. Therearejustthreeisomorphicclassesof two-dimensionalunitarycommu-
tative algebras,namely, that of C, P(2) andP~Pwhere (see above)P(2)=
{ 1, ~ I ~2 = 0}. Forequationswith twoindependentvariablesC-typegeometricsin-
gularitieslook as ramificationpointsof riemanniansurfacesandas (n—2)-di-
mensionalfamiliesof suchonesfor n independentvariables.In four-dimensional
space—timeofC-typesingularitycanbeviewedas avortexaroundamovingcurve.
Thissetsfire to the suspicionthatC-singularitiescouldplay animportantrole in
the futureturbulencetheory.

Thenextquestionthat arisesimmediatelywhenstudyingconcreteequations
is:

Whatlabel typeofgeometricsingularitiesdoesa givensystemofpartial differen-
tial equationsadmit?

This is an essentially algebraic problem which we illustrate with the following
examplesto omit the generaldiscussion.
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Examples.1. A systemof partial differential equationsadmits FOLD-typesin-
gularitiesonly if it admitsnon-zerocharacteristiccovectors.For instance,solu-
tions of elliptic equationsdo not admitFOLD-singularities.

2. Let 9?’ be a second-orderscalardifferential equationof two independent
variables.Thenit admitsonlyoneof thethreetypesof two-dimensionalsingular-
ities mentionedin the precedingexample.This is the C-type for elliptic equa-
tions, the P(2)-typefor parabolicequationsandP~P-typefor hyperbolicequa-
tions.

A moredelicateproblemis to describesubmanifoldsof the form sing1Wfor
multivaluedsolutions Wof a given differential equationanda given solution
singularity typeE. Here sing1Wc Wstandsfor the submanifoldof X-singular
pointsof W. In otherwords, weare interestedin determiningthe shapesof ~‘-

singularitiesadmittedby a givenequation.
The solutionof this problemcanbe sketchedas follows: Let a label solution

singularity type .�‘ be fixed; thenit is possibleto associatewith a given systemof
partialdifferentialequations9?’ anothersystem9?~suchthat submanifoldsof the
form sing1W, Wbeinga multivaluedsolutionof 9?’, satisfy 9?~and, conversely,
every solution of ~ is of the form sing1Wfor (possibly formal) multivalued
solutionsof 9?’.

If 9?’ is of n independentvariables,then~W1is of n— s independentvariables
wheres is the dimensionof the label .�. The constructionof equations9?~is not
simpleenoughto bereproducedhere.Instead,in thenextsectionweexhibitsome
examplesfrom which the readercanconceivean ideaof them.Informally speak-
ing, if 9?! describesaphysicalsubstance,sayafield oracontinuousmedium,then
~ describesthebehaviorof acertainkind of singularitiesof this substance,that
canbe characterizedby the label singularitytype ~�. In the casewhen9?! refersto
independentspace—timevariablesthe equation9?~-describesthe propagationof
s-typesingularitiesin the substancein question.

Denoteby CHAR1 the functor that associatesthe equation~ with a given
equation9?’. Theproblem:

to what extentdoes the behavior ofthe singularities ofa given typeofphysical
system determine the system itself?

is, evidently,of fundamentalimportanceandthe searchfor thedomainof inver-
tibility of the functorCHAR1 is maybethe mostsignificantaspectof it. The fol-
lowing resultgivesan instructiveexampleon thismatter.

TheFOLD-reconstruction theorem.Everyhyperbolicsystemofpartialdifferential
equations 9?’ is determinedcompletelyby theassociatedsystem

9?!FOLD.
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In otherwords,ahyperbolicsystem9?’ canbewritten downexplicitlyonly if the
system9?’FOLD is known.

The abovetheoremcanbereformulatedby sayingthat the functorCHARFOLD

is invertible on theclassof hyperbolicequations.Onthe otherhand,this functor
is not invertible on the classof elliptic equationsdueto the fact that 9?.’FOLD ~

emptyfor anyelliptic 9?’.
The general“singularityreconstructionproblem” we arediscussingmayhave

variousflavors dependingon the chosen,not necessarilygeometric,solutionsin-
gularity type. For instance,the classicalproblemof fields andsourcescan be
viewedas its particularcase.Another remarkableexamplecanbe found in the
historyof electrodynamics.Observingthat theelementarylawsof electricityand
magnetismsuchas that by Coulombor Faradaydescribethe behaviorof some
kindof singularitiesof electromagneticfields,we seeMaxwell’s equationsto give
the solutionof the correspondingsingularityreconstructionproblem.

The importanceof multivaluedsolutiontheorycomesin evidencealsodueto
its relationswith the Sobolev—Schwartztheoryof generalizedsolutionsof linear
partialdifferentialequations.Theserelationsare basedon the observationthat
onecanget ageneralizedsolutionof agivenlinear differentialequationsimply
by summingup branchesof amultivaluedsolutionof it. As amatterof fact, the
procedureassigningthe generalizedsolutionto a given multivaluedoneis more
delicatethana simplesummationandis basedon the choiceof a de Rhamtype
cohomologytheoryandasuitableclassoftest functions.Maslov-typecharacter-
istic classesthenariseasobstructionsto performthisprocedureandtheirnature
dependson thecohomologytheorychosen(seeRefs. [26,52,28]).

It is worth stressingthatgeneralizedsolutionsassignedto multivaluedones
with no FOLD-singularitiesare, in fact, smooth,i.e. not properly generalized
functions.This correlatesnicely with the well-known fact thatgeneralizedsolu-
tionsof elliptic equationsareexhaustedby smoothsolutions,i.e. one-valuedones,
while such equationsadmit non-trivial multivalued solutions (say, branched
riemanniansurfacesfor the Cauchy—Riemannequation)with non-FOLD-type
singularities.Theseandothersimilar facts showmultivaluedsolutionsto be a
satisfactorysubstitutionforgeneralizedonesfor non-lineardifferentialequations
wherethe latter cannotevenbe defined.Moreover,the formerare a finer tool
alsoin the frameworkofthe lineartheory.

Furtherdetailsandresultson thetopicstoucheduponin thissectionthe reader
can befoundin the book [17] andin theauthor’s lecture [52]. For asystematic
expositionseetheforthcomingpaper[55]. Manyotherinterestingaspectsofso-
lution singularitytheoryarepresentedin therecentreviewby Lychagin[28].

Multivaluedsolutionswere introducedin the author’swork [43] followed by
a technically simplebut instructivework [18] by Krishchenko.Afterwards,a
significantseriesof worksby Lychaginappeared.Unfortunately,thesenamesal-
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mostexhaustthe list of contributorsin thisfield. Forafull bibliographyseeRefs.
[17,28,55].

17.Waveand geometricalopticsand other examples

In thissectionwe illustratethe generalitiesof thepreviousonewith somesim-
ple examplestakenfrom Ref. [24]. We enterhereneitherinto technicaldetails
nor into interpretationsof the exhibitedequation,referringthe readerto Ref.
[24].

17.1. X-characteristicequations

Let m : E—~Mbeafibering, 9?l ~ jk
2~ bea systemof differentialequationsand.�

bealabelsolutionsingularitytype.The .~-characteristic system of .�~Tis thesystem
of differential equationswhosesolutions are of the form 7r~(sing1W)where
Thk:JJtM1S the naturalprojectionandWis amultivaluedsolutionof 9?’.

Denotethe .�-characteristicequationof 9?! by 9?’~andobservethat the whole
system~“1 is obtainedby addingto 9Y°~someotherequationscalledcomplemen-
tary. If 9?’ refersto independentspace—timevariables,then~ governsmotions
of X-singularlocusesof thephysicalsystemin questionwhile thecomplementary
equationsdescribetheevolutionof the internalstructuresof I-singularities.

Classicalcharacteristicequations,whosetheorywasinitiatedby Hugoniotand
thendevelopedsystematicallyby Hadamard(seeRef. [11]), arisenaturally in
the study of uniquenessof the initial dataproblem.As we havealready men-

tioned,the uniquenesssproblemis includedin thetheoryof FOLD singularities.
So, it isnot surprisingthatFOLD-characteristicequationscoincidewith classical
ones.We recommendRefs. [20,21,35], in which first attemptsto applyclassical
characteristicequationsto quantummechanicsandrelativity weremade.

Thecoordinate-wiserepresentationof FOLD-characteristicequationslooksas
follows. Let the basicequation9?! begivenby (10) with F,n,~, j= 1, ..., 1. Intro-
ducethecharacteristicmatrixof 9?’ to be

I k ~, I k öu~91’

I k -~ ~5 1< ~

wherep
5=p’~’, ..., p’,~’for a= (i

1, ..., i5). The FOLD-characteristicequationbe-
comestrivial, i.e. 0=0,for 1< m. If l~imwegettheFOLD-characteristicequation9?’FOLD of I-singularlocusesrepresentablein the form x~=9(x

1 x~1)by sub-
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stituting a9/ax,for p1, i = 1, ..., n— 1, and — 1 for p,, in J~F andthenequatingto

zeroall mth-orderminorsofthe matrix so obtained.

Remark. Strictly speakingthe aboveprocedure is valid only for a formally inte-
grable9?!.

17.2. Maxwellequationsandgeometricoptics

ConsiderthevacuumMaxwell equations(= “wave optics”):

divE=0, rotE=—-
1--~,

c at

divH=0 rotH=-’---~.
c at

In this casen= 4, M= 6, 1=8.So,the characteristicmatrix is (8 x6) rectangular
andadirect computationshowsthat all its sixth-orderminorsareof the form

~(++~ ~

with ~ or ±p
1p1.So, putting x4=t we seethat the equation lW~OLDcoincides

with the standardeikonalequation

(a )2 (8 )2 (8 )2 (28)

ax1 8x2 ax3 c

In suchaway weobtaintheinterpretationof thiswell-knownfact in termsof the
solutionsingularitytheory.However,this givesussomethingmore,namely,the
complementaryequationsthat composetogetherwith the eikonalequationthe
wholesystem

9?1FOLD~Theselook as follows:

div hE=gradç9~rothH,

rot hE+div h~gradç=grad9xrot hH.

HerehE andh.’, aresingularvalues,i.e. valueson the singularsurfacet=9(x
1, x2,

x3),of theelectricandmagneticfields, respectively.

17.3On thecomplementaryequations

It is obviousfrom the procedureof section17.1 that very differentequations
can havethe samecharacteristicequation.For example,the eikonal equation
(28) isalsothecharacteristicequationfor theKlein—Gordonequation,
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182u 2u=0.

So, it is not possibleto reconstructthe originalequationknowing only its char-
acteristicequation.In view of the ReconstructionTheoremof the previoussec-
tion the onlyinformationoneneedsfor thereconstructionis containedexactlyin
the complementaryequations.Therefore,an independentanddirect physical
interpretationof quantitiesenteringinto theseequationswould allowoneto make
up the informationthat is lacking to solve the correspondingsingularity recon-
structionproblem.Onecanseenow that thissingularity interpretationproblem
becomesvery important.Forexample,asolutionof this problemfor continuous
mediawouldprovideuswith aregularmethod

todeduceequationsgoverninga givencontinuousmediumproceedingfrom obser-
vationsofhowsingularitiesofagiventype(or types)propagatein it.

Thiswouldbeanattractivealternativeto thepresentphenomenologicalstatusof
mechanicsof continuousmedia.

It isclearthatthequantization“a laSchrodinger”canalsobetreatedassucha
kindof interpretationproblem.In thiscontexttheHamilton—Jacobiequationsof
classicalmechanicsconsideredasQ-characteristicequationsareto becompleted
by suitablecomplementaryequations.It isnaturalto think thatthe standardfor-
malquantizationmethods“a laHeisenberg”coverjusttheremaininggapof these
hypotheticalcomplementaryequations.

17.4Alternativesingularitiesvia thehomogenizationtrick

Theclassical,i.e. FOLD-characteristicequationfor the Schrödingerequation,

ih~ + ~—A~—V~=0, (29)

andfor singularlocusesgivenin the form t=x
4=ço(x1,x2, x3), is

(a\12+ (~~-~2+ =

\.öxi) \.8x2) \,8x3)

This demonstratesthatgeometricsingularitiesarenot adequatefor the corre-
spondencebetweenquantumand classical mechanics.For the hypothetical
“quantum” singularity type (seesection3) the Q-characteristicequation9?’~

shouldbe
a 1 ~a \2

(30)at 2mi,~3~ax1j



AM. VinogradovI JournalofGeometryandPhysics14 (1994)146—194 191

It is possible,however,to interpret(30) as the classicalcharacteristicequation
for the “homogenized”Schrodingerequation,

O2~ + 1 v 8~’+v~~’0 31
OtOs 2m,~

1Ox? 0s2

in five-space(x1,x2, x3, t, s) assumingthatsingularlocusesaregivenin theform
s—~(x1,x,,x3, t)=0. Onthe otherhand, (31) reducesto (29) on the functions

~=Q~(x,t)exp((i/h)s) . (32)

Thismotivatesusto defineQ-singularitiesasthereductionof FOLD singularities
on the functions (32). This is not, however,very straightforwardandwe refer
the readerto Ref. [24] for someresultsof thisapproach.

17.5. P(k)-characteristicequations

In thissubsectionsomeanalogsoftheHamilton—Jacobiequationfor extended
(i.e. not point-like)singularlocusesareexhibited.Forsimplicity wehavechosen
thewaveequation

~ 8
2u 1 02u

Ox~— c2 0t2

as basic.SinceP(j) = FOLD the P(
1)-characteristicequationcoincideswith the

standardeikonalequation(28).

Fork= 2 andthesingularitylocusesgivenby

x3=W(s,t) , withs=x1

the P(2)-characteristicequationlooksas

(oo — a
\,at Os Ot Os) \,Ot) \,at) \~Os) \.Os) —

Its solutionsaretwo-dimensionalsurfacestangentto thelight cone.
Finally, the P(3)-characteristicequationfor singularity curvesof the form

x~=x1(t),i= 1, 2, 3, is

Forotherexamples,resultsanddiscussionsseeRef. [24].
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